đ wav2vec2-base-timit-demo-google-colab
This model is a fine - tuned version of facebook/wav2vec2-base on the None dataset. It provides valuable results on the evaluation set, which can be used for speech - related tasks.
đ Quick Start
This model is a fine - tuned version of facebook/wav2vec2-base on the None dataset.
It achieves the following results on the evaluation set:
đ Documentation
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
đ§ Technical Details
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e - 08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Wer |
3.5137 |
1.0 |
500 |
1.6719 |
0.9580 |
0.8324 |
2.01 |
1000 |
0.5546 |
0.5341 |
0.4365 |
3.01 |
1500 |
0.4567 |
0.4635 |
0.3058 |
4.02 |
2000 |
0.4429 |
0.4454 |
0.2284 |
5.02 |
2500 |
0.4734 |
0.4186 |
0.1892 |
6.02 |
3000 |
0.4191 |
0.4030 |
0.1542 |
7.03 |
3500 |
0.4522 |
0.3985 |
0.1364 |
8.03 |
4000 |
0.4749 |
0.3922 |
0.1239 |
9.04 |
4500 |
0.4950 |
0.3977 |
0.1092 |
10.04 |
5000 |
0.4468 |
0.3779 |
0.0956 |
11.04 |
5500 |
0.4897 |
0.3789 |
0.0897 |
12.05 |
6000 |
0.4927 |
0.3718 |
0.0792 |
13.05 |
6500 |
0.5242 |
0.3699 |
0.0731 |
14.06 |
7000 |
0.5202 |
0.3772 |
0.0681 |
15.06 |
7500 |
0.5046 |
0.3637 |
0.062 |
16.06 |
8000 |
0.5336 |
0.3664 |
0.0556 |
17.07 |
8500 |
0.5017 |
0.3633 |
0.0556 |
18.07 |
9000 |
0.5466 |
0.3736 |
0.0461 |
19.08 |
9500 |
0.5489 |
0.3566 |
0.0439 |
20.08 |
10000 |
0.5399 |
0.3559 |
0.0397 |
21.08 |
10500 |
0.5154 |
0.3539 |
0.0346 |
22.09 |
11000 |
0.5170 |
0.3513 |
0.0338 |
23.09 |
11500 |
0.5236 |
0.3492 |
0.0342 |
24.1 |
12000 |
0.5288 |
0.3493 |
0.0282 |
25.1 |
12500 |
0.5147 |
0.3449 |
0.0251 |
26.1 |
13000 |
0.5092 |
0.3442 |
0.0268 |
27.11 |
13500 |
0.5093 |
0.3413 |
0.021 |
28.11 |
14000 |
0.5310 |
0.3399 |
0.022 |
29.12 |
14500 |
0.5185 |
0.3370 |
Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cu113
- Datasets 1.18.3
- Tokenizers 0.12.1
đ License
This project is licensed under the Apache - 2.0 license.