đ wav2vec2-base-timit-demo-google-colab
This model is a fine - tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:
đ Quick Start
This section provides a high - level overview of the model and its performance. For more detailed information, please refer to the following sections.
đ Documentation
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e - 08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Wer |
3.5557 |
1.0 |
500 |
1.6786 |
1.0 |
0.8407 |
2.01 |
1000 |
0.5356 |
0.9988 |
0.4297 |
3.01 |
1500 |
0.4431 |
0.9988 |
0.2989 |
4.02 |
2000 |
0.4191 |
0.9988 |
0.2338 |
5.02 |
2500 |
0.4251 |
0.9988 |
0.1993 |
6.02 |
3000 |
0.4618 |
0.9988 |
0.1585 |
7.03 |
3500 |
0.4577 |
0.9988 |
0.1386 |
8.03 |
4000 |
0.4099 |
0.9982 |
0.1234 |
9.04 |
4500 |
0.4945 |
0.9988 |
0.1162 |
10.04 |
5000 |
0.4597 |
0.9988 |
0.1008 |
11.04 |
5500 |
0.4563 |
0.9988 |
0.0894 |
12.05 |
6000 |
0.5157 |
0.9988 |
0.083 |
13.05 |
6500 |
0.5027 |
0.9988 |
0.0735 |
14.06 |
7000 |
0.4905 |
0.9994 |
0.0686 |
15.06 |
7500 |
0.4552 |
0.9988 |
0.0632 |
16.06 |
8000 |
0.5522 |
0.9988 |
0.061 |
17.07 |
8500 |
0.4874 |
0.9988 |
0.0626 |
18.07 |
9000 |
0.5243 |
0.9988 |
0.0475 |
19.08 |
9500 |
0.4798 |
0.9988 |
0.0447 |
20.08 |
10000 |
0.5250 |
0.9988 |
0.0432 |
21.08 |
10500 |
0.5195 |
0.9988 |
0.0358 |
22.09 |
11000 |
0.5008 |
0.9988 |
0.0319 |
23.09 |
11500 |
0.5376 |
0.9988 |
0.0334 |
24.1 |
12000 |
0.5149 |
0.9988 |
0.0269 |
25.1 |
12500 |
0.4911 |
0.9988 |
0.0275 |
26.1 |
13000 |
0.4907 |
0.9988 |
0.027 |
27.11 |
13500 |
0.4992 |
0.9988 |
0.0239 |
28.11 |
14000 |
0.5021 |
0.9988 |
0.0233 |
29.12 |
14500 |
0.5112 |
0.9988 |
Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cu113
- Datasets 1.18.3
- Tokenizers 0.12.1
đ License
This model is licensed under the Apache - 2.0 license.