🚀 FLUX.1 Kontext模型风格LoRA适配器
本仓库为FLUX.1 Kontext模型提供了20多种风格的LoRA适配器,能够实现多种艺术和卡通风格的高质量图像到图像生成。这些LoRA是在由GPT - 4o生成的高质量配对数据上进行训练的。数据来源于Omniconsistency。
语言与模型信息
属性 |
详情 |
语言 |
英文 |
基础模型 |
black - forest - labs/FLUX.1 - Kontext - dev |
任务类型 |
图像到图像 |
库名称 |
diffusers |
标签 |
Style、Ghibli、FluxKontext、Image - to - Image |
🚀 快速开始
本仓库提供了一系列风格的LoRA适配器,可用于为FLUX.1 Kontext模型赋予多种艺术和卡通风格,实现高质量的图像到图像生成。
✨ 主要特性
- 提供20多种风格的LoRA适配器,可实现多种艺术和卡通风格的图像生成。
- LoRA适配器在由GPT - 4o生成的高质量配对数据上训练。
- 数据来源于Omniconsistency。
最新消息!
我们创建了[Kontext - Style](https://huggingface.co/Kontext - Style)来为每个LoRA单独建立仓库!并且我们提供了[空间演示](https://huggingface.co/spaces/Kontext - Style/Kontext - Style - LoRAs),可以直接在线运行我们的LoRA!

贡献者:香港科技大学(广州)的叶天和费松。
💻 使用示例
基础用法
from huggingface_hub import hf_hub_download
from diffusers import FluxKontextPipeline
from diffusers.utils import load_image
import torch
STYLE_NAME = "3D_Chibi"
style_type_lora_dict = {
"3D_Chibi": "3D_Chibi_lora_weights.safetensors",
"American_Cartoon": "American_Cartoon_lora_weights.safetensors",
"Chinese_Ink": "Chinese_Ink_lora_weights.safetensors",
"Clay_Toy": "Clay_Toy_lora_weights.safetensors",
"Fabric": "Fabric_lora_weights.safetensors",
"Ghibli": "Ghibli_lora_weights.safetensors",
"Irasutoya": "Irasutoya_lora_weights.safetensors",
"Jojo": "Jojo_lora_weights.safetensors",
"Oil_Painting": "Oil_Painting_lora_weights.safetensors",
"Pixel": "Pixel_lora_weights.safetensors",
"Snoopy": "Snoopy_lora_weights.safetensors",
"Poly": "Poly_lora_weights.safetensors",
"LEGO": "LEGO_lora_weights.safetensors",
"Origami" : "Origami_lora_weights.safetensors",
"Pop_Art" : "Pop_Art_lora_weights.safetensors",
"Van_Gogh" : "Van_Gogh_lora_weights.safetensors",
"Paper_Cutting" : "Paper_Cutting_lora_weights.safetensors",
"Line" : "Line_lora_weights.safetensors",
"Vector" : "Vector_lora_weights.safetensors",
"Picasso" : "Picasso_lora_weights.safetensors",
"Macaron" : "Macaron_lora_weights.safetensors",
"Rick_Morty" : "Rick_Morty_lora_weights.safetensors"
}
hf_hub_download(repo_id="Owen777/Kontext-Style-Loras", filename=style_type_lora_dict[STYLE_NAME], local_dir="./LoRAs")
image = load_image("https://huggingface.co/datasets/black-forest-labs/kontext-bench/resolve/main/test/images/0003.jpg").resize((1024, 1024))
image.save("0037.png")
pipeline = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to('cuda')
pipeline.load_lora_weights(f"./LoRAs/{style_type_lora_dict[STYLE_NAME]}", adapter_name="lora")
pipeline.set_adapters(["lora"], adapter_weights=[1])
image = pipeline(image=image, prompt=f"Turn this image into the {STYLE_NAME.replace('_', ' ')} style.",height=1024,width=1024,num_inference_steps=24).images[0]
image.save(f"{STYLE_NAME}.png")
如果您有任何反馈或合作需求,欢迎提出问题或与我们联系!我们将尽快发布更多风格的LoRA适配器!