🚀 深度伪造检测器模型 v1
深度伪造检测器模型 v1
是一个基于视觉 - 语言编码器的模型,它由 google/siglip-base-patch16-512
微调而来,用于二分类的深度伪造图像识别。该模型经过训练,能够检测一张图像是真实的,还是使用合成媒体技术生成的。模型采用了 SiglipForImageClassification
架构。
属性 |
详情 |
模型类型 |
基于视觉 - 语言编码器的图像分类模型 |
基础模型 |
google/siglip2-base-patch16-512 |
训练数据 |
prithivMLmods/OpenDeepfake-Preview |
许可证 |
Apache-2.0 |
⚠️ 重要提示
此模型处于实验阶段。

🚀 快速开始
安装依赖
pip install -q transformers torch pillow gradio hf_xet
推理代码
import gradio as gr
from transformers import AutoImageProcessor, SiglipForImageClassification
from PIL import Image
import torch
model_name = "prithivMLmods/deepfake-detector-model-v1"
model = SiglipForImageClassification.from_pretrained(model_name)
processor = AutoImageProcessor.from_pretrained(model_name)
id2label = {
"0": "fake",
"1": "real"
}
def classify_image(image):
image = Image.fromarray(image).convert("RGB")
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
prediction = {
id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))
}
return prediction
iface = gr.Interface(
fn=classify_image,
inputs=gr.Image(type="numpy"),
outputs=gr.Label(num_top_classes=2, label="Deepfake Classification"),
title="deepfake-detector-model",
description="Upload an image to classify whether it is real or fake using a deepfake detection model."
)
if __name__ == "__main__":
iface.launch()
✨ 主要特性
- 深度伪造检测:能够准确识别由 AI 生成的虚假图像。
- 媒体认证:验证数字视觉内容的真实性。
- 内容审核:协助在线平台过滤合成媒体。
- 法医分析:通过检测被篡改的视觉数据,支持数字取证工作。
- 安全应用:可集成到监控系统中进行真实性验证。
💻 使用示例
基础用法
import gradio as gr
from transformers import AutoImageProcessor, SiglipForImageClassification
from PIL import Image
import torch
model_name = "prithivMLmods/deepfake-detector-model-v1"
model = SiglipForImageClassification.from_pretrained(model_name)
processor = AutoImageProcessor.from_pretrained(model_name)
id2label = {
"0": "fake",
"1": "real"
}
def classify_image(image):
image = Image.fromarray(image).convert("RGB")
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
prediction = {
id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))
}
return prediction
iface = gr.Interface(
fn=classify_image,
inputs=gr.Image(type="numpy"),
outputs=gr.Label(num_top_classes=2, label="Deepfake Classification"),
title="deepfake-detector-model",
description="Upload an image to classify whether it is real or fake using a deepfake detection model."
)
if __name__ == "__main__":
iface.launch()
📚 详细文档
分类报告
Classification Report:
precision recall f1-score support
Fake 0.9718 0.9155 0.9428 10000
Real 0.9201 0.9734 0.9460 9999
accuracy 0.9444 19999
macro avg 0.9459 0.9444 0.9444 19999
weighted avg 0.9459 0.9444 0.9444 19999
标签空间
该模型将图像分类为以下两类:
Class 0: 虚假
Class 1: 真实

📄 许可证
本项目采用 Apache - 2.0 许可证。