🚀 多项选择题问答模型(مدل برای پاسخ به سوالات چهار جوابی)
这是一个基于 mBERT 的多项选择题问答模型。该模型能够高效处理多项选择题,为用户提供准确的答案,在波斯语等多语言环境下表现出色。
🚀 快速开始
以下是如何运行此模型的示例:
from typing import List
import torch
from transformers import AutoConfig, AutoModelForMultipleChoice, AutoTokenizer
model_name = "persiannlp/mbert-base-parsinlu-multiple-choice"
tokenizer = AutoTokenizer.from_pretrained(model_name)
config = AutoConfig.from_pretrained(model_name)
model = AutoModelForMultipleChoice.from_pretrained(model_name, config=config)
def run_model(question: str, candicates: List[str]):
assert len(candicates) == 4, "you need four candidates"
choices_inputs = []
for c in candicates:
text_a = ""
text_b = question + " " + c
inputs = tokenizer(
text_a,
text_b,
add_special_tokens=True,
max_length=128,
padding="max_length",
truncation=True,
return_overflowing_tokens=True,
)
choices_inputs.append(inputs)
input_ids = torch.LongTensor([x["input_ids"] for x in choices_inputs])
output = model(input_ids=input_ids)
print(output)
return output
run_model(question="وسیع ترین کشور جهان کدام است؟", candicates=["آمریکا", "کانادا", "روسیه", "چین"])
run_model(question="طامع یعنی ؟", candicates=["آزمند", "خوش شانس", "محتاج", "مطمئن"])
run_model(
question="زمینی به ۳۱ قطعه متساوی مفروض شده است و هر روز مساحت آماده شده برای احداث، دو برابر مساحت روز قبل است.اگر پس از (۵ روز) تمام زمین آماده شده باشد، در چه روزی یک قطعه زمین آماده شده ",
candicates=["روز اول", "روز دوم", "روز سوم", "هیچکدام"])
📚 详细文档
如需更多详细信息,请访问此页面:https://github.com/persiannlp/parsinlu/
📄 许可证
本模型采用 CC BY-NC-SA 4.0 许可证。
📊 模型信息