Wikibert Base Parsinlu Multiple Choice
这是一个基于wikibert架构的波斯语多选题问答模型,专门用于处理波斯语的多选题问答任务。
下载量 37
发布时间 : 3/2/2022
模型简介
该模型基于wikibert架构,针对波斯语多选题问答任务进行了优化,能够从四个候选答案中选择最合适的答案。
模型特点
波斯语支持
专门针对波斯语(法尔西语)优化,能够有效处理波斯语的多选题问答任务。
多选题处理能力
能够从四个候选答案中选择最合适的答案,适用于标准化的多选题测试场景。
基于wikibert架构
采用wikibert预训练模型架构,具有良好的语言理解能力。
模型能力
波斯语文本理解
多选题答案选择
语义相似度判断
使用案例
教育评估
语言测试
用于波斯语语言能力测试中的多选题评分
自动评估学生答案的正确性
知识问答系统
构建波斯语知识问答系统中的答案选择模块
提高问答系统的准确率
🚀 多项选择题问答模型 (مدل برای پاسخ به سوالات چهار جوابی)
这是一个基于Wikibert的多项选择题问答模型,能够高效地处理多项选择题,为用户提供准确的答案。以下将展示如何运行该模型。
🚀 快速开始
此模型基于Wikibert构建,用于处理多项选择题。以下是运行该模型的示例代码:
from typing import List
import torch
from transformers import AutoConfig, AutoModelForMultipleChoice, AutoTokenizer
model_name = "persiannlp/wikibert-base-parsinlu-multiple-choice"
tokenizer = AutoTokenizer.from_pretrained(model_name)
config = AutoConfig.from_pretrained(model_name)
model = AutoModelForMultipleChoice.from_pretrained(model_name, config=config)
def run_model(question: str, candicates: List[str]):
assert len(candicates) == 4, "you need four candidates"
choices_inputs = []
for c in candicates:
text_a = "" # empty context
text_b = question + " " + c
inputs = tokenizer(
text_a,
text_b,
add_special_tokens=True,
max_length=128,
padding="max_length",
truncation=True,
return_overflowing_tokens=True,
)
choices_inputs.append(inputs)
input_ids = torch.LongTensor([x["input_ids"] for x in choices_inputs])
output = model(input_ids=input_ids)
print(output)
return output
run_model(question="وسیع ترین کشور جهان کدام است؟", candicates=["آمریکا", "کانادا", "روسیه", "چین"])
run_model(question="طامع یعنی ؟", candicates=["آزمند", "خوش شانس", "محتاج", "مطمئن"])
run_model(
question="زمینی به ۳۱ قطعه متساوی مفروض شده است و هر روز مساحت آماده شده برای احداث، دو برابر مساحت روز قبل است.اگر پس از (۵ روز) تمام زمین آماده شده باشد، در چه روزی یک قطعه زمین آماده شده ",
candicates=["روز اول", "روز دوم", "روز سوم", "هیچکدام"])
💻 使用示例
基础用法
from typing import List
import torch
from transformers import AutoConfig, AutoModelForMultipleChoice, AutoTokenizer
model_name = "persiannlp/wikibert-base-parsinlu-multiple-choice"
tokenizer = AutoTokenizer.from_pretrained(model_name)
config = AutoConfig.from_pretrained(model_name)
model = AutoModelForMultipleChoice.from_pretrained(model_name, config=config)
def run_model(question: str, candicates: List[str]):
assert len(candicates) == 4, "you need four candidates"
choices_inputs = []
for c in candicates:
text_a = "" # empty context
text_b = question + " " + c
inputs = tokenizer(
text_a,
text_b,
add_special_tokens=True,
max_length=128,
padding="max_length",
truncation=True,
return_overflowing_tokens=True,
)
choices_inputs.append(inputs)
input_ids = torch.LongTensor([x["input_ids"] for x in choices_inputs])
output = model(input_ids=input_ids)
print(output)
return output
run_model(question="وسیع ترین کشور جهان کدام است؟", candicates=["آمریکا", "کانادا", "روسیه", "چین"])
run_model(question="طامع یعنی ؟", candicates=["آزمند", "خوش شانس", "محتاج", "مطمئن"])
run_model(
question="زمینی به ۳۱ قطعه متساوی مفروض شده است و هر روز مساحت آماده شده برای احداث، دو برابر مساحت روز قبل است.اگر پس از (۵ روز) تمام زمین آماده شده باشد، در چه روزی یک قطعه زمین آماده شده ",
candicates=["روز اول", "روز دوم", "روز سوم", "هیچکدام"])
高级用法
# 可以根据需求修改模型的配置参数,如修改最大长度、添加更多的特殊标记等,以适应不同的应用场景。
# 例如,修改max_length参数来处理更长的文本。
from typing import List
import torch
from transformers import AutoConfig, AutoModelForMultipleChoice, AutoTokenizer
model_name = "persiannlp/wikibert-base-parsinlu-multiple-choice"
tokenizer = AutoTokenizer.from_pretrained(model_name)
config = AutoConfig.from_pretrained(model_name)
model = AutoModelForMultipleChoice.from_pretrained(model_name, config=config)
def run_model(question: str, candicates: List[str]):
assert len(candicates) == 4, "you need four candidates"
choices_inputs = []
for c in candicates:
text_a = "" # empty context
text_b = question + " " + c
inputs = tokenizer(
text_a,
text_b,
add_special_tokens=True,
max_length=256, # 修改最大长度
padding="max_length",
truncation=True,
return_overflowing_tokens=True,
)
choices_inputs.append(inputs)
input_ids = torch.LongTensor([x["input_ids"] for x in choices_inputs])
output = model(input_ids=input_ids)
print(output)
return output
run_model(question="وسیع ترین کشور جهان کدام است؟", candicates=["آمریکا", "کانادا", "روسیه", "چین"])
run_model(question="طامع یعنی ؟", candicates=["آزمند", "خوش شانس", "محتاج", "مطمئن"])
run_model(
question="زمینی به ۳۱ قطعه متساوی مفروض شده است و هر روز مساحت آماده شده برای احداث، دو برابر مساحت روز قبل است.اگر پس از (۵ روز) تمام زمین آماده شده باشد، در چه روزی یک قطعه زمین آماده شده ",
candicates=["روز اول", "روز دوم", "روز سوم", "هیچکدام"])
📚 详细文档
如需了解更多详细信息,请访问此页面:https://github.com/persiannlp/parsinlu/
📄 许可证
本项目采用CC BY-NC-SA 4.0许可证。
属性 | 详情 |
---|---|
语言 | 波斯语、多语言 |
标签 | 多项选择、Wikibert、波斯语 |
任务类型 | 文本分类 |
数据集 | Parsinlu |
评估指标 | 准确率 |
Distilbert Base Cased Distilled Squad
Apache-2.0
DistilBERT是BERT的轻量级蒸馏版本,参数量减少40%,速度提升60%,保留95%以上性能。本模型是在SQuAD v1.1数据集上微调的问答专用版本。
问答系统 英语
D
distilbert
220.76k
244
Distilbert Base Uncased Distilled Squad
Apache-2.0
DistilBERT是BERT的轻量级蒸馏版本,参数量减少40%,速度提升60%,在GLUE基准测试中保持BERT 95%以上的性能。本模型专为问答任务微调。
问答系统
Transformers 英语

D
distilbert
154.39k
115
Tapas Large Finetuned Wtq
Apache-2.0
TAPAS是基于BERT架构的表格问答模型,通过自监督方式在维基百科表格数据上预训练,支持对表格内容进行自然语言问答
问答系统
Transformers 英语

T
google
124.85k
141
T5 Base Question Generator
基于t5-base的问答生成模型,输入答案和上下文,输出相应问题
问答系统
Transformers

T
iarfmoose
122.74k
57
Bert Base Cased Qa Evaluator
基于BERT-base-cased的问答对评估模型,用于判断问题和答案是否语义相关
问答系统
B
iarfmoose
122.54k
9
Tiny Doc Qa Vision Encoder Decoder
MIT
一个基于MIT许可证的文档问答模型,主要用于测试目的。
问答系统
Transformers

T
fxmarty
41.08k
16
Dpr Question Encoder Single Nq Base
DPR(密集段落检索)是用于开放领域问答研究的工具和模型。该模型是基于BERT的问题编码器,使用自然问题(NQ)数据集训练。
问答系统
Transformers 英语

D
facebook
32.90k
30
Mobilebert Uncased Squad V2
MIT
MobileBERT是BERT_LARGE的轻量化版本,在SQuAD2.0数据集上微调而成的问答系统模型。
问答系统
Transformers 英语

M
csarron
29.11k
7
Tapas Base Finetuned Wtq
Apache-2.0
TAPAS是一个基于Transformer的表格问答模型,通过自监督学习在维基百科表格数据上预训练,并在WTQ等数据集上微调。
问答系统
Transformers 英语

T
google
23.03k
217
Dpr Question Encoder Multiset Base
基于BERT的密集段落检索(DPR)问题编码器,用于开放领域问答研究,在多个QA数据集上训练
问答系统
Transformers 英语

D
facebook
17.51k
4
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98