🚀 hiera_abswin_base_mim模型卡片
这是一个采用绝对窗口位置嵌入策略的Hiera图像编码器,通过掩码图像建模(MIM)进行预训练。该模型未针对特定分类任务进行微调,旨在作为通用特征提取器或用于下游任务(如目标检测、分割或自定义分类)的骨干网络。
🚀 快速开始
此模型可作为通用特征提取器或下游任务的骨干网络。你可以按照以下使用示例进行操作。
✨ 主要特性
- 采用绝对窗口位置嵌入策略的图像编码器。
- 通过掩码图像建模(MIM)进行预训练。
- 未针对特定分类任务进行微调,适用于通用特征提取和下游任务。
📚 详细文档
模型详情
💻 使用示例
基础用法
图像嵌入
import birder
from birder.inference.classification import infer_image
(net, model_info) = birder.load_pretrained_model("hiera_abswin_base_mim", inference=True)
size = birder.get_size_from_signature(model_info.signature)
transform = birder.classification_transform(size, model_info.rgb_stats)
image = "path/to/image.jpeg"
(out, embedding) = infer_image(net, image, transform, return_embedding=True)
检测特征图
from PIL import Image
import birder
(net, model_info) = birder.load_pretrained_model("hiera_abswin_base_mim", inference=True)
size = birder.get_size_from_signature(model_info.signature)
transform = birder.classification_transform(size, model_info.rgb_stats)
image = Image.open("path/to/image.jpeg")
features = net.detection_features(transform(image).unsqueeze(0))
print([(k, v.size()) for k, v in features.items()])
📄 许可证
本模型采用Apache 2.0许可证。
📖 引用
@misc{ryali2023hierahierarchicalvisiontransformer,
title={Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles},
author={Chaitanya Ryali and Yuan-Ting Hu and Daniel Bolya and Chen Wei and Haoqi Fan and Po-Yao Huang and Vaibhav Aggarwal and Arkabandhu Chowdhury and Omid Poursaeed and Judy Hoffman and Jitendra Malik and Yanghao Li and Christoph Feichtenhofer},
year={2023},
eprint={2306.00989},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2306.00989},
}
@misc{bolya2023windowattentionbuggedinterpolate,
title={Window Attention is Bugged: How not to Interpolate Position Embeddings},
author={Daniel Bolya and Chaitanya Ryali and Judy Hoffman and Christoph Feichtenhofer},
year={2023},
eprint={2311.05613},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2311.05613},
}