Segformer B2 Cloth Parse 9
模型简介
该模型专门用于服装图像的分割任务,能够识别并分割出服装的各个组成部分,如袖子、裤腿、领子等。适用于时尚分析、虚拟试衣等场景。
模型特点
高精度服装分割
在多个服装部件上达到高准确率,特别是在上半身、裤腿和袖子等主要部件上表现优异。
多部件识别
能够识别并分割多达11种不同的服装部件,包括内外领、左右袖等细节部分。
高效训练
使用相对较小的批次大小(12)和适中的学习率(1e-05)进行高效训练,仅需5轮即可获得良好效果。
模型能力
服装图像分割
多部件识别
像素级分类
使用案例
时尚科技
虚拟试衣系统
用于在线购物平台的虚拟试衣功能,精确分割服装部件以实现逼真的试穿效果。
服装设计分析
帮助设计师分析服装结构和部件比例,优化设计方案。
电子商务
商品图像自动标注
自动为电商平台的服装商品图像添加部件标签,提升搜索和推荐准确性。
🚀 segformer-b2-cloth-parse-9
该模型是基于mattmdjaga/segformer_b2_clothes在cloth_parsing_mix
数据集上微调得到的图像分割模型,在评估集上取得了优异的成绩。
🚀 快速开始
此模型主要用于图像分割任务,可直接基于微调后的参数进行推理,以实现对衣物的分割识别。
✨ 主要特性
- 微调优化:基于
mattmdjaga/segformer_b2_clothes
模型在cloth_parsing_mix
数据集上进行微调,更适配衣物解析任务。 - 高精度表现:在评估集上各项指标表现优秀,如损失值低至 0.0433,平均交并比(Mean Iou)达到 0.8611 等。
📦 安装指南
文档中未提及安装步骤,可参考原模型mattmdjaga/segformer_b2_clothes
的安装说明以及相关依赖库的安装方式。
💻 使用示例
文档中未提供代码示例,可参考transformers
库中图像分割模型的使用方法,结合本模型进行推理。
📚 详细文档
评估结果
该模型在评估集上的表现如下:
- 损失(Loss):0.0433
- 平均交并比(Mean Iou):0.8611
- 平均准确率(Mean Accuracy):0.9107
- 整体准确率(Overall Accuracy):0.9846
- 背景准确率(Accuracy Background):0.9964
- 上半身准确率(Accuracy Upper Torso):0.9857
- 左裤准确率(Accuracy Left Pants):0.9654
- 右裤准确率(Accuracy Right Patns):0.9664
- 裙子准确率(Accuracy Skirts):0.9065
- 左袖准确率(Accuracy Left Sleeve):0.9591
- 右袖准确率(Accuracy Right Sleeve):0.9662
- 外领准确率(Accuracy Outer Collar):0.6491
- 内领准确率(Accuracy Inner Collar):0.8015
- 背景交并比(Iou Background):0.9923
- 上半身交并比(Iou Upper Torso):0.9655
- 左裤交并比(Iou Left Pants):0.9017
- 右裤交并比(Iou Right Patns):0.9085
- 裙子交并比(Iou Skirts):0.8749
- 左袖交并比(Iou Left Sleeve):0.9223
- 右袖交并比(Iou Right Sleeve):0.9289
- 外领交并比(Iou Outer Collar):0.5394
- 内领交并比(Iou Inner Collar):0.7160
训练过程
训练超参数
训练过程中使用的超参数如下:
属性 | 详情 |
---|---|
学习率(learning_rate) | 1e-05 |
训练批次大小(train_batch_size) | 12 |
评估批次大小(eval_batch_size) | 12 |
随机种子(seed) | 42 |
优化器(optimizer) | Adam,betas=(0.9, 0.999),epsilon=1e-08 |
学习率调度器类型(lr_scheduler_type) | linear |
训练轮数(num_epochs) | 5 |
训练结果
训练过程中的各项指标变化如下:
训练损失(Training Loss) | 轮数(Epoch) | 步数(Step) | 验证损失(Validation Loss) | 平均交并比(Mean Iou) | 平均准确率(Mean Accuracy) | 整体准确率(Overall Accuracy) | 背景准确率(Accuracy Background) | 上半身准确率(Accuracy Upper Torso) | 左裤准确率(Accuracy Left Pants) | 右裤准确率(Accuracy Right Patns) | 裙子准确率(Accuracy Skirts) | 左袖准确率(Accuracy Left Sleeve) | 右袖准确率(Accuracy Right Sleeve) | 外领准确率(Accuracy Outer Collar) | 内领准确率(Accuracy Inner Collar) | 背景交并比(Iou Background) | 上半身交并比(Iou Upper Torso) | 左裤交并比(Iou Left Pants) | 右裤交并比(Iou Right Patns) | 裙子交并比(Iou Skirts) | 左袖交并比(Iou Left Sleeve) | 右袖交并比(Iou Right Sleeve) | 外领交并比(Iou Outer Collar) | 内领交并比(Iou Inner Collar) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.1054 | 0.11 | 500 | 0.1180 | 0.7305 | 0.7971 | 0.9670 | 0.9902 | 0.9720 | 0.9654 | 0.9756 | 0.8036 | 0.9226 | 0.9289 | 0.0716 | 0.5444 | 0.9830 | 0.9234 | 0.8752 | 0.8765 | 0.7370 | 0.8236 | 0.8232 | 0.0703 | 0.4628 |
0.1033 | 0.22 | 1000 | 0.0851 | 0.7862 | 0.8418 | 0.9746 | 0.9924 | 0.9829 | 0.9665 | 0.9653 | 0.8491 | 0.9145 | 0.9226 | 0.3219 | 0.6608 | 0.9866 | 0.9424 | 0.8858 | 0.8875 | 0.8105 | 0.8538 | 0.8614 | 0.2833 | 0.5642 |
0.0944 | 0.32 | 1500 | 0.0713 | 0.8077 | 0.8595 | 0.9773 | 0.9941 | 0.9833 | 0.9566 | 0.9625 | 0.8924 | 0.9094 | 0.9181 | 0.4414 | 0.6774 | 0.9880 | 0.9481 | 0.8937 | 0.8950 | 0.8437 | 0.8668 | 0.8751 | 0.3629 | 0.5958 |
0.0746 | 0.43 | 2000 | 0.0683 | 0.8190 | 0.8770 | 0.9783 | 0.9941 | 0.9796 | 0.9652 | 0.9722 | 0.8656 | 0.9480 | 0.9562 | 0.4882 | 0.7236 | 0.9888 | 0.9497 | 0.9070 | 0.9127 | 0.8306 | 0.8790 | 0.8870 | 0.3945 | 0.6218 |
0.0548 | 0.54 | 2500 | 0.0666 | 0.8187 | 0.8713 | 0.9787 | 0.9951 | 0.9831 | 0.9580 | 0.9606 | 0.8651 | 0.9215 | 0.9453 | 0.4839 | 0.7293 | 0.9893 | 0.9514 | 0.8939 | 0.9006 | 0.8245 | 0.8812 | 0.8964 | 0.4010 | 0.6298 |
0.0728 | 0.65 | 3000 | 0.0591 | 0.8271 | 0.8806 | 0.9804 | 0.9945 | 0.9839 | 0.9624 | 0.9659 | 0.8982 | 0.9399 | 0.9430 | 0.4884 | 0.7493 | 0.9900 | 0.9551 | 0.8940 | 0.8966 | 0.8583 | 0.8930 | 0.9011 | 0.4100 | 0.6458 |
0.0505 | 0.75 | 3500 | 0.0648 | 0.8218 | 0.8745 | 0.9797 | 0.9947 | 0.9847 | 0.9858 | 0.9905 | 0.8402 | 0.9500 | 0.9587 | 0.4480 | 0.7178 | 0.9900 | 0.9534 | 0.9022 | 0.9037 | 0.8223 | 0.8944 | 0.9017 | 0.3881 | 0.6402 |
0.0601 | 0.86 | 4000 | 0.0568 | 0.8415 | 0.8951 | 0.9817 | 0.9952 | 0.9817 | 0.9632 | 0.9640 | 0.9170 | 0.9521 | 0.9541 | 0.5781 | 0.7508 | 0.9903 | 0.9576 | 0.9138 | 0.9199 | 0.8716 | 0.9010 | 0.9106 | 0.4562 | 0.6529 |
0.0438 | 0.97 | 4500 | 0.0569 | 0.8431 | 0.8925 | 0.9815 | 0.9947 | 0.9844 | 0.9764 | 0.9838 | 0.8870 | 0.9492 | 0.9595 | 0.5561 | 0.7416 | 0.9903 | 0.9560 | 0.9287 | 0.9370 | 0.8585 | 0.9000 | 0.9089 | 0.4524 | 0.6559 |
0.0617 | 1.08 | 5000 | 0.0529 | 0.8417 | 0.8933 | 0.9816 | 0.9952 | 0.9841 | 0.9602 | 0.9631 | 0.8922 | 0.9475 | 0.9533 | 0.5797 | 0.7642 | 0.9907 | 0.9571 | 0.9097 | 0.9126 | 0.8488 | 0.9044 | 0.9158 | 0.4687 | 0.6678 |
0.0452 | 1.19 | 5500 | 0.0557 | 0.8351 | 0.8935 | 0.9812 | 0.9949 | 0.9842 | 0.9644 | 0.9667 | 0.8781 | 0.9494 | 0.9604 | 0.5961 | 0.7471 | 0.9906 | 0.9588 | 0.8803 | 0.8885 | 0.8349 | 0.9069 | 0.9169 | 0.4743 | 0.6645 |
0.0571 | 1.29 | 6000 | 0.0551 | 0.8351 | 0.8934 | 0.9810 | 0.9957 | 0.9831 | 0.9652 | 0.9693 | 0.8562 | 0.9593 | 0.9569 | 0.5959 | 0.7586 | 0.9910 | 0.9579 | 0.8842 | 0.8879 | 0.8188 | 0.9084 | 0.9155 | 0.4774 | 0.6749 |
0.0778 | 1.4 | 6500 | 0.0537 | 0.8430 | 0.8994 | 0.9818 | 0.9948 | 0.9839 | 0.9872 | 0.9921 | 0.8702 | 0.9587 | 0.9635 | 0.5790 | 0.7656 | 0.9911 | 0.9579 | 0.9044 | 0.9093 | 0.8458 | 0.9060 | 0.9157 | 0.4760 | 0.6808 |
0.0392 | 1.51 | 7000 | 0.0491 | 0.8503 | 0.9069 | 0.9830 | 0.9954 | 0.9823 | 0.9645 | 0.9666 | 0.9205 | 0.9534 | 0.9599 | 0.6214 | 0.7984 | 0.9916 | 0.9607 | 0.9123 | 0.9139 | 0.8755 | 0.9072 | 0.9180 | 0.4907 | 0.6830 |
0.0376 | 1.62 | 7500 | 0.0514 | 0.8442 | 0.9010 | 0.9819 | 0.9954 | 0.9832 | 0.9652 | 0.9660 | 0.8850 | 0.9525 | 0.9598 | 0.6257 | 0.7762 | 0.9914 | 0.9586 | 0.8944 | 0.9053 | 0.8355 | 0.9104 | 0.9215 | 0.4965 | 0.6838 |
0.0391 | 1.73 | 8000 | 0.0492 | 0.8422 | 0.8993 | 0.9819 | 0.9958 | 0.9836 | 0.9641 | 0.9671 | 0.8692 | 0.9561 | 0.9661 | 0.6159 | 0.7756 | 0.9916 | 0.9596 | 0.8882 | 0.8930 | 0.8338 | 0.9103 | 0.9189 | 0.4982 | 0.6860 |
0.0446 | 1.83 | 8500 | 0.0491 | 0.8515 | 0.9079 | 0.9829 | 0.9960 | 0.9836 | 0.9890 | 0.9913 | 0.8770 | 0.9505 | 0.9631 | 0.6458 | 0.7751 | 0.9916 | 0.9603 | 0.9114 | 0.9161 | 0.8559 | 0.9100 | 0.9217 | 0.5096 | 0.6867 |
0.041 | 1.94 | 9000 | 0.0482 | 0.8464 | 0.8978 | 0.9825 | 0.9958 | 0.9848 | 0.9619 | 0.9668 | 0.8822 | 0.9569 | 0.9659 | 0.5961 | 0.7703 | 0.9916 | 0.9602 | 0.8958 | 0.9018 | 0.8438 | 0.9148 | 0.9231 | 0.4966 | 0.6899 |
0.0744 | 2.05 | 9500 | 0.0474 | 0.8523 | 0.9018 | 0.9834 | 0.9961 | 0.9840 | 0.9598 | 0.9633 | 0.9195 | 0.9471 | 0.9644 | 0.6055 | 0.7766 | 0.9919 | 0.9619 | 0.9095 | 0.9125 | 0.8697 | 0.9113 | 0.9238 | 0.5010 | 0.6889 |
0.0433 | 2.16 | 10000 | 0.0471 | 0.8581 | 0.9103 | 0.9842 | 0.9951 | 0.9843 | 0.9617 | 0.9646 | 0.9416 | 0.9549 | 0.9718 | 0.6305 | 0.7879 | 0.9915 | 0.9644 | 0.9100 | 0.9155 | 0.8976 | 0.9145 | 0.9245 | 0.5127 | 0.6920 |
0.0412 | 2.26 | 10500 | 0.0468 | 0.8574 | 0.9042 | 0.9835 | 0.9956 | 0.9848 | 0.9628 | 0.9669 | 0.9023 | 0.9615 | 0.9677 | 0.6115 | 0.7847 | 0.9918 | 0.9601 | 0.9248 | 0.9286 | 0.8656 | 0.9177 | 0.9245 | 0.5073 | 0.6964 |
0.0489 | 2.37 | 11000 | 0.0496 | 0.8511 | 0.9029 | 0.9832 | 0.9956 | 0.9858 | 0.9905 | 0.9948 | 0.8694 | 0.9574 | 0.9654 | 0.5748 | 0.7926 | 0.9921 | 0.9604 | 0.9066 | 0.9086 | 0.8615 | 0.9167 | 0.9228 | 0.4913 | 0.7004 |
0.0388 | 2.48 | 11500 | 0.0450 | 0.8594 | 0.9036 | 0.9849 | 0.9957 | 0.9857 | 0.9621 | 0.9648 | 0.9620 | 0.9493 | 0.9604 | 0.5733 | 0.7793 | 0.9922 | 0.9649 | 0.9155 | 0.9205 | 0.9076 | 0.9138 | 0.9257 | 0.4941 | 0.7002 |
0.0409 | 2.59 | 12000 | 0.0493 | 0.8579 | 0.9124 | 0.9844 | 0.9955 | 0.9853 | 0.9928 | 0.9929 | 0.9083 | 0.9573 | 0.9671 | 0.6288 | 0.7832 | 0.9921 | 0.9651 | 0.9046 | 0.9086 | 0.8842 | 0.9196 | 0.9267 | 0.5175 | 0.7026 |
0.0477 | 2.7 | 12500 | 0.0436 | 0.8610 | 0.9051 | 0.9848 | 0.9957 | 0.9868 | 0.9639 | 0.9675 | 0.9478 | 0.9445 | 0.9590 | 0.5972 | 0.7831 | 0.9919 | 0.9654 | 0.9187 | 0.9251 | 0.9029 | 0.9126 | 0.9253 | 0.5035 | 0.7034 |
0.0488 | 2.8 | 13000 | 0.0450 | 0.8577 | 0.9076 | 0.9842 | 0.9963 | 0.9848 | 0.9712 | 0.9695 | 0.9132 | 0.9493 | 0.9621 | 0.6188 | 0.8026 | 0.9924 | 0.9635 | 0.9095 | 0.9124 | 0.8742 | 0.9172 | 0.9276 | 0.5157 | 0.7065 |
0.0879 | 2.91 | 13500 | 0.0516 | 0.8453 | 0.8949 | 0.9819 | 0.9960 | 0.9867 | 0.9631 | 0.9665 | 0.8325 | 0.9618 | 0.9678 | 0.6033 | 0.7763 | 0.9919 | 0.9574 | 0.8955 | 0.9007 | 0.8088 | 0.9206 | 0.9245 | 0.5069 | 0.7013 |
0.0525 | 3.02 | 14000 | 0.0474 | 0.8521 | 0.9053 | 0.9830 | 0.9959 | 0.9849 | 0.9850 | 0.9925 | 0.8703 | 0.9481 | 0.9597 | 0.6076 | 0.8038 | 0.9923 | 0.9600 | 0.9050 | 0.9099 | 0.8420 | 0.9143 | 0.9263 | 0.5148 | 0.7044 |
0.0455 | 3.13 | 14500 | 0.0435 | 0.8579 | 0.9111 | 0.9842 | 0.9953 | 0.9852 | 0.9646 | 0.9672 | 0.9255 | 0.9569 | 0.9654 | 0.6514 | 0.7888 | 0.9923 | 0.9642 | 0.8971 | 0.9055 | 0.8780 | 0.9182 | 0.9284 | 0.5327 | 0.7046 |
0.0454 | 3.24 | 15000 | 0.0451 | 0.8599 | 0.9161 | 0.9844 | 0.9953 | 0.9858 | 0.9895 | 0.9907 | 0.8944 | 0.9635 | 0.9692 | 0.6643 | 0.7925 | 0.9924 | 0.9645 | 0.9061 | 0.9107 | 0.8803 | 0.9202 | 0.9236 | 0.5356 | 0.7058 |
0.0687 | 3.34 | 15500 | 0.0496 | 0.8482 | 0.9017 | 0.9827 | 0.9959 | 0.9869 | 0.9715 | 0.9676 | 0.8483 | 0.9616 | 0.9672 | 0.6235 | 0.7932 | 0.9922 | 0.9614 | 0.8904 | 0.8909 | 0.8269 | 0.9187 | 0.9218 | 0.5249 | 0.7069 |
0.0555 | 3.45 | 16000 | 0.0445 | 0.8568 | 0.9081 | 0.9838 | 0.9964 | 0.9858 | 0.9649 | 0.9681 | 0.8880 | 0.9585 | 0.9610 | 0.6510 | 0.7995 | 0.9922 | 0.9635 | 0.8996 | 0.9073 | 0.8582 | 0.9230 | 0.9257 | 0.5328 | 0.7093 |
0.0528 | 3.56 | 16500 | 0.0477 | 0.8549 | 0.9053 | 0.9833 | 0.9958 | 0.9875 | 0.9668 | 0.9677 | 0.8740 | 0.9512 | 0.9631 | 0.6512 | 0.7902 | 0.9920 | 0.9618 | 0.9021 | 0.9036 | 0.8486 | 0.9185 | 0.9254 | 0.5348 | 0.7070 |
0.043 | 3.67 | 17000 | 0.0439 | 0.8633 | 0.9173 | 0.9849 | 0.9960 | 0.9851 | 0.9860 | 0.9893 | 0.9114 | 0.9555 | 0.9656 | 0.6623 | 0.8046 | 0.9921 | 0.9666 | 0.9083 | 0.9158 | 0.8910 | 0.9197 | 0.9262 | 0.5391 | 0.7111 |
0.0372 | 3.77 | 17500 | 0.0474 | 0.8555 | 0.9039 | 0.9836 | 0.9959 | 0.9876 | 0.9626 | 0.9647 | 0.8818 | 0.9556 | 0.9623 | 0.6393 | 0.7858 | 0.9921 | 0.9623 | 0.8999 | 0.9065 | 0.8526 | 0.9218 | 0.9264 | 0.5299 | 0.7082 |
0.0614 | 3.88 | 18000 | 0.0463 | 0.8564 | 0.9088 | 0.9839 | 0.9959 | 0.9853 | 0.9644 | 0.9662 | 0.9035 | 0.9569 | 0.9638 | 0.6413 | 0.8025 | 0.9921 | 0.9643 | 0.8967 | 0.9020 | 0.8607 | 0.9202 | 0.9276 | 0.5330 | 0.7111 |
0.0413 | 3.99 | 18500 | 0.0453 | 0.8579 | 0.9123 | 0.9841 | 0.9963 | 0.9848 | 0.9794 | 0.9828 | 0.8865 | 0.9613 | 0.9695 | 0.6526 | 0.7977 | 0.9922 | 0.9648 | 0.8991 | 0.9047 | 0.8629 | 0.9221 | 0.9274 | 0.5369 | 0.7112 |
0.0386 | 4.1 | 19000 | 0.0438 | 0.8578 | 0.9109 | 0.9842 | 0.9959 | 0.9844 | 0.9649 | 0.9667 | 0.9154 | 0.9580 | 0.9662 | 0.6408 | 0.8062 | 0.9924 | 0.9644 | 0.8973 | 0.9025 | 0.8683 | 0.9196 | 0.9279 | 0.5340 | 0.7134 |
0.0541 | 4.21 | 19500 | 0.0443 | 0.8577 | 0.9118 | 0.9840 | 0.9957 | 0.9847 | 0.9829 | 0.9872 | 0.8935 | 0.9594 | 0.9686 | 0.6265 | 0.8077 | 0.9921 | 0.9641 | 0.9017 | 0.9079 | 0.8621 | 0.9203 | 0.9277 | 0.5298 | 0.7133 |
0.0409 | 4.31 | 20000 | 0.0433 | 0.8560 | 0.9083 | 0.9840 | 0.9959 | 0.9860 | 0.9670 | 0.9687 | 0.9020 | 0.9578 | 0.9632 | 0.6421 | 0.7918 | 0.9922 | 0.9652 | 0.8921 | 0.8966 | 0.8633 | 0.9206 | 0.9278 | 0.5349 | 0.7117 |
0.0398 | 4.42 | 20500 | 0.0451 | 0.8581 | 0.9102 | 0.9840 | 0.9960 | 0.9859 | 0.9687 | 0.9685 | 0.8885 | 0.9597 | 0.9684 | 0.6554 | 0.8004 | 0.9922 | 0.9638 | 0.9000 | 0.9042 | 0.8595 | 0.9232 | 0.9266 | 0.5395 | 0.7144 |
0.038 | 4.53 | 21000 | 0.0464 | 0.8608 | 0.9123 | 0.9843 | 0.9959 | 0.9866 | 0.9885 | 0.9907 | 0.8739 | 0.9616 | 0.9678 | 0.6398 | 0.8056 | 0.9921 | 0.9639 | 0.9088 | 0.9160 | 0.8657 | 0.9238 | 0.9273 | 0.5347 | 0.7150 |
0.0295 | 4.64 | 21500 | 0.0433 | 0.8596 | 0.9094 | 0.9840 | 0.9960 | 0.9864 | 0.9641 | 0.9664 | 0.8985 | 0.9535 | 0.9582 | 0.6581 | 0.8033 | 0.9922 | 0.9633 | 0.9056 | 0.9102 | 0.8619 | 0.9195 | 0.9276 | 0.5408 | 0.7151 |
0.0318 | 4.75 | 22000 | 0.0439 | 0.8600 | 0.9127 | 0.9842 | 0.9964 | 0.9848 | 0.9665 | 0.9676 | 0.8929 | 0.9627 | 0.9689 | 0.6656 | 0.8089 | 0.9923 | 0.9643 | 0.9007 | 0.9080 | 0.8645 | 0.9223 | 0.9283 | 0.5444 | 0.7156 |
0.0377 | 4.85 | 22500 | 0.0429 | 0.8619 | 0.9125 | 0.9846 | 0.9963 | 0.9849 | 0.9633 | 0.9666 | 0.9115 | 0.9609 | 0.9689 | 0.6527 | 0.8069 | 0.9923 | 0.9654 | 0.9052 | 0.9104 | 0.8762 | 0.9217 | 0.9288 | 0.5407 | 0.7166 |
0.0419 | 4.96 | 23000 | 0.0433 | 0.8611 | 0.9107 | 0.9846 | 0.9964 | 0.9857 | 0.9654 | 0.9664 | 0.9065 | 0.9591 | 0.9662 | 0.6491 | 0.8015 | 0.9923 | 0.9655 | 0.9017 | 0.9085 | 0.8749 | 0.9223 | 0.9289 | 0.5394 | 0.7160 |
框架版本
该模型使用的框架版本如下:
属性 | 详情 |
---|---|
Transformers | 4.35.2 |
Pytorch | 2.1.1 |
Datasets | 2.15.0 |
Tokenizers | 0.15.0 |
🔧 技术细节
此模型基于segformer_b2
架构,在cloth_parsing_mix
数据集上进行微调。通过调整超参数,如学习率、批次大小等,不断优化模型性能,使其在衣物分割任务上取得了良好的效果。训练过程中使用了 Adam 优化器和线性学习率调度器,经过 5 个轮次的训练,模型逐渐收敛,各项指标不断提升。
📄 许可证
本模型采用 MIT 许可证。
Clipseg Rd64 Refined
Apache-2.0
CLIPSeg是一种基于文本与图像提示的图像分割模型,支持零样本和单样本图像分割任务。
图像分割
Transformers

C
CIDAS
10.0M
122
RMBG 1.4
其他
BRIA RMBG v1.4 是一款先进的背景移除模型,专为高效分离各类图像的前景与背景而设计,适用于非商业用途。
图像分割
Transformers

R
briaai
874.12k
1,771
RMBG 2.0
其他
BRIA AI开发的最新背景移除模型,能有效分离各类图像的前景与背景,适合大规模商业内容创作场景。
图像分割
Transformers

R
briaai
703.33k
741
Segformer B2 Clothes
MIT
基于ATR数据集微调的SegFormer模型,用于服装和人体分割
图像分割
Transformers

S
mattmdjaga
666.39k
410
Sam Vit Base
Apache-2.0
SAM是一个能够通过输入提示(如点或框)生成高质量对象掩码的视觉模型,支持零样本分割任务
图像分割
Transformers 其他

S
facebook
635.09k
137
Birefnet
MIT
BiRefNet是一个用于高分辨率二分图像分割的深度学习模型,通过双边参考网络实现精确的图像分割。
图像分割
Transformers

B
ZhengPeng7
626.54k
365
Segformer B1 Finetuned Ade 512 512
其他
SegFormer是一种基于Transformer的语义分割模型,在ADE20K数据集上进行了微调,适用于图像分割任务。
图像分割
Transformers

S
nvidia
560.79k
6
Sam Vit Large
Apache-2.0
SAM是一个能够通过输入提示点或边界框生成高质量物体掩膜的视觉模型,具备零样本迁移能力。
图像分割
Transformers 其他

S
facebook
455.43k
28
Face Parsing
基于nvidia/mit-b5微调的语义分割模型,用于面部解析任务
图像分割
Transformers 英语

F
jonathandinu
398.59k
157
Sam Vit Huge
Apache-2.0
SAM是一个能够根据输入提示生成高质量对象掩码的视觉模型,支持零样本迁移到新任务
图像分割
Transformers 其他

S
facebook
324.78k
163
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98