Segformer B0 Scene Parse 150
模型简介
该模型是基于NVIDIA的MIT-B0架构在Scene Parse 150数据集上微调的场景解析模型,能够对复杂场景中的150类物体进行像素级分割识别
模型特点
轻量级架构
采用MIT-B0轻量级主干网络,平衡性能与计算效率
多类别识别
支持150类场景物体的精确分割识别
端到端训练
完整训练流程优化,可直接应用于实际场景解析任务
模型能力
图像语义分割
场景理解
像素级分类
多物体识别
使用案例
智能城市
街景分析
自动识别街道场景中的各类元素(建筑、道路、车辆等)
自动驾驶
环境感知
实时解析道路场景,辅助车辆决策系统
🚀 segformer-b0-scene-parse-150
本模型是在scene_parse_150
数据集上对nvidia/mit-b0进行微调后的版本,可用于图像分割任务,在评估集上取得了一系列评估指标结果。
🚀 快速开始
该模型是 nvidia/mit-b0 在 scene_parse_150
数据集上的微调版本。它在评估集上取得了以下结果:
- 损失值:2.3431
- 平均交并比(Mean Iou):0.0959
- 平均准确率(Mean Accuracy):0.1537
- 整体准确率(Overall Accuracy):0.5496
- 每类别交并比(Per Category Iou):[0.44824978876617866, 0.7548671615728508, 0.7119201505944329, 0.5304481563680256, 0.5684691275095736, 0.33051502835188457, 0.6982393617021276, 0.0, 0.3703529914609331, 0.6659141206351092, 0.028823893043720683, 0.17181416221210322, 0.052153820762502065, 0.0, 0.0, 0.0005543923800536699, 0.40565901784724534, 0.05230759173712194, 0.0, 0.07225859019823891, 0.29980315155352005, nan, 0.003601361102652032, 0.0, 0.0, nan, 0.0, 0.0, 0.38898705304076847, 0.05940808241958817, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0]
- 每类别准确率(Per Category Accuracy):[0.8427949438202247, 0.9402615186644498, 0.7846678763016725, 0.7286579984703183, 0.8303175022736334, 0.469325820621132, 0.9020126572710594, nan, 0.5974398752913491, 0.9683369330453564, 0.05725843345934362, 0.24220857754209693, 0.12377594986290638, 0.0, 0.0, 0.0005611873291065182, 0.9580213623749935, 0.08566177782535773, 0.0, 0.16335928996064641, 0.43531591571750716, nan, 0.0036190907034607555, 0.0, 0.0, nan, nan, 0.0, 0.45750991876062724, 0.24276243093922653, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0]
🔧 技术细节
训练超参数
训练过程中使用了以下超参数:
- 学习率(learning_rate):6e - 05
- 训练批次大小(train_batch_size):2
- 评估批次大小(eval_batch_size):2
- 随机种子(seed):42
- 优化器(optimizer):Adam,其中
betas=(0.9, 0.999)
,epsilon=1e - 08
- 学习率调度器类型(lr_scheduler_type):线性
- 训练轮数(num_epochs):50
训练结果
训练损失 | 轮数 | 步数 | 验证损失 | 平均交并比 | 平均准确率 | 整体准确率 | 每类别交并比 | 每类别准确率 |
---|---|---|---|---|---|---|---|---|
4.9918 | 0.5 | 20 | 4.8969 | 0.0108 | 0.0487 | 0.1875 | [0.18900717264720193, 0.17829851112253592, 0.40144144917749963, 0.1885612981412077, 0.11895876927062042, 0.09866217819019046, 0.0057814729592400894, 0.0, 0.0, 0.0, 0.009622579129617706, 0.022129523898301137, 0.0037298450062015365, 0.0, 0.0, 0.0, 0.06277911646586345, 0.0, 0.0, 0.003906402593851322, 0.012887091043266734, nan, 0.0019786836291242806, 0.0, 0.0, 0.0, 0.0, 0.0, 0.015807537456273512, 0.016491354532320934, 0.0, 0.0, 0.0, nan, 0.001438298321545445, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.025794247180438844, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.012904182735093445, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0] | [0.2067212858926342, 0.2463388525747603, 0.8113718838750394, 0.515406462102938, 0.1316758582686337, 0.11907251217424253, 0.007544887960475232, nan, 0.0, 0.0, 0.013315354795213214, 0.22085775420969392, 0.054576315445880666, 0.0, 0.0, 0.0, 0.07673176606105031, 0.0, 0.0, 0.004186552792430713, 0.013544374703761687, nan, 0.0021687933259709673, 0.0, 0.0, nan, nan, 0.0, 0.01809937653504629, 0.30082872928176796, 0.0, nan, 0.0, nan, 0.0019430975470621792, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.3248302818350134, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.05007914807886027, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
4.551 | 1.0 | 40 | 4.5955 | 0.0202 | 0.0640 | 0.3442 | [0.3519414971273263, 0.3937735618735424, 0.42161939446421154, 0.21975617697678057, 0.3809140886893701, 0.09030492572322127, 0.005777833411293457, 0.0, 0.0, 0.0, 0.0, 0.02885598249784122, 0.0, 0.0, 0.0, 0.0, 0.0573680633208358, 0.0, 0.0011308737583006134, 0.006298751950078003, 0.057306667023884476, nan, 0.0014234124996705063, 0.0, 0.0, 0.0, nan, 0.0, 0.017088433502956954, 0.023128390596745027, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0052120890103356235, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0] | [0.5003401997503121, 0.785197975265903, 0.952571789207952, 0.4632600048849975, 0.5973921536125012, 0.09887449654069073, 0.006026290292656446, nan, 0.0, 0.0, 0.0, 0.4399013861754582, 0.0, 0.0, 0.0, 0.0, 0.06849835069898948, 0.0, 0.0098046905639658, 0.0067612827597756005, 0.06144521207072375, nan, 0.0014369918969623589, 0.0, 0.0, nan, nan, 0.0, 0.018779520120914415, 0.07066298342541437, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.01695124459987657, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
4.3293 | 1.5 | 60 | 4.2491 | 0.0352 | 0.0776 | 0.4184 | [0.3871309742960387, 0.45006666311952553, 0.6112315905191344, 0.3032571607536305, 0.44533070206501846, 0.063346836376098, 0.022528980712202534, 0.0, 0.0, 0.0, 0.0, 0.029790687595074403, 0.0019532612486920127, 0.0, 0.0, 0.0, 0.24116048081196448, 0.0, 0.0, 0.0003640114056907116, 0.2558965972702686, nan, 0.0005833454863642993, 0.0, 0.0, nan, 0.0, 0.0, 0.002751498247333308, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.7088701622971286, 0.8308114309791149, 0.8838434837488167, 0.5903983055833383, 0.8704499330230141, 0.06874412338436925, 0.02526644174013427, nan, 0.0, 0.0, 0.0, 0.3261233603125872, 0.0036558297427862646, 0.0, 0.0, 0.0, 0.305421749829834, 0.0, 0.0, 0.00037678975131876413, 0.350616893842552, nan, 0.0005854411432068869, 0.0, 0.0, nan, nan, 0.0, 0.0027583600982429624, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
3.9435 | 2.0 | 80 | 4.1371 | 0.0349 | 0.0760 | 0.4181 | [0.35782571228523724, 0.4339785275779836, 0.33734326770427064, 0.3463785302488506, 0.485148026657255, 0.060373176138162864, 0.25141442893216265, 0.0, 0.0, 0.0, 0.0, 0.03557946863062567, 0.0016987542468856172, 0.0, 0.0, 0.0, 0.07208336234305739, 0.0, 0.0, 0.0, 0.23636984914447706, nan, 0.0012355355980390855, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0013693940431359123, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.5806023720349563, 0.8385180609014508, 0.9781397917324077, 0.6769715154724274, 0.8375259283816657, 0.06956509535905245, 0.3441307230861203, nan, 0.0, 0.0, 0.0, 0.18348218438924552, 0.0019584802193497847, 0.0, 0.0, 0.0, 0.08131315775695062, 0.0, 0.0, 0.0, 0.26825905232466285, nan, 0.0012374096890509201, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0026519337016574587, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
3.951 | 2.5 | 100 | 3.7658 | 0.0401 | 0.0786 | 0.4477 | [0.405717317146636, 0.4086408628919567, 0.46930568969097103, 0.3717459827442089, 0.4797755033427323, 0.09497839561115337, 0.3326272962505519, 0.0, 0.0, 0.0, 0.0, 0.042534003647694614, 0.0014730878186968838, 0.0, 0.0, 0.0, 0.0077221054763652935, 0.0, 0.0, 0.0, 0.1928527248986324, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.6074812734082397, 0.8766682989045027, 0.9717970968759861, 0.7857572013599547, 0.917421184439835, 0.10295479742341103, 0.40897690494678035, nan, 0.0, 0.0, 0.0, 0.14699041771327565, 0.00169734952343648, 0.0, 0.0, 0.0, 0.007984711241426252, 0.0, 0.0, 0.0, 0.2015282306134467, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
3.7065 | 3.0 | 120 | 3.6117 | 0.0484 | 0.0779 | 0.4436 | [0.30003355195190606, 0.6100469285116588, 0.7166468505013384, 0.2808355790192315, 0.4914731888407471, 0.004109398150913026, 0.3171473942892336, 0.0, 0.0, 0.0, 0.0, 0.0061059528193994845, 0.0, 0.0, 0.0, 0.0, 0.29060069752832357, 0.0, 0.0, 0.0, 0.17904034375746, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, ...(表格后续内容过长,此处省略) | ...(表格后续内容过长,此处省略) |
📄 许可证
本项目使用其他许可证(license: other
)。
信息表格
属性 | 详情 |
---|---|
模型类型 | 基于nvidia/mit-b0 微调的图像分割模型 |
训练数据 | scene_parse_150数据集 |
Clipseg Rd64 Refined
Apache-2.0
CLIPSeg是一种基于文本与图像提示的图像分割模型,支持零样本和单样本图像分割任务。
图像分割
Transformers

C
CIDAS
10.0M
122
RMBG 1.4
其他
BRIA RMBG v1.4 是一款先进的背景移除模型,专为高效分离各类图像的前景与背景而设计,适用于非商业用途。
图像分割
Transformers

R
briaai
874.12k
1,771
RMBG 2.0
其他
BRIA AI开发的最新背景移除模型,能有效分离各类图像的前景与背景,适合大规模商业内容创作场景。
图像分割
Transformers

R
briaai
703.33k
741
Segformer B2 Clothes
MIT
基于ATR数据集微调的SegFormer模型,用于服装和人体分割
图像分割
Transformers

S
mattmdjaga
666.39k
410
Sam Vit Base
Apache-2.0
SAM是一个能够通过输入提示(如点或框)生成高质量对象掩码的视觉模型,支持零样本分割任务
图像分割
Transformers 其他

S
facebook
635.09k
137
Birefnet
MIT
BiRefNet是一个用于高分辨率二分图像分割的深度学习模型,通过双边参考网络实现精确的图像分割。
图像分割
Transformers

B
ZhengPeng7
626.54k
365
Segformer B1 Finetuned Ade 512 512
其他
SegFormer是一种基于Transformer的语义分割模型,在ADE20K数据集上进行了微调,适用于图像分割任务。
图像分割
Transformers

S
nvidia
560.79k
6
Sam Vit Large
Apache-2.0
SAM是一个能够通过输入提示点或边界框生成高质量物体掩膜的视觉模型,具备零样本迁移能力。
图像分割
Transformers 其他

S
facebook
455.43k
28
Face Parsing
基于nvidia/mit-b5微调的语义分割模型,用于面部解析任务
图像分割
Transformers 英语

F
jonathandinu
398.59k
157
Sam Vit Huge
Apache-2.0
SAM是一个能够根据输入提示生成高质量对象掩码的视觉模型,支持零样本迁移到新任务
图像分割
Transformers 其他

S
facebook
324.78k
163
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98