Chat Vector Llava V1.5 7b Ja
一款能够用日语就输入图像进行对话的视觉语言模型,采用Chat Vector方法结合多个模型权重创建
下载量 26
发布时间 : 5/6/2024
模型简介
该模型能够理解图像内容并用日语进行对话,适用于图像描述生成和视觉问答等任务。
模型特点
日语视觉对话
专门针对日语优化的视觉语言模型,能够理解图像并用日语进行对话
多模型融合
采用Chat Vector方法融合多个优秀模型的权重,结合各自优势
多任务支持
支持图像描述生成、视觉问答等多种视觉语言任务
模型能力
图像内容理解
日语对话生成
视觉问答
图像描述生成
使用案例
视觉问答
日语图像问答
对输入图像提出问题,模型用日语回答相关问题
在JA-VG-VQA-500数据集上ROUGE-L得分为18.64
图像描述
日语图像描述生成
为输入图像生成日语描述
在Heron-Bench(细节)任务上得分为53.61
🚀 Chat-Vector-LLaVA-v1.5-7b-JA模型卡片
Chat-Vector-LLaVA-v1.5-7b-JA是一款视觉语言模型,能够以日语对输入图像进行交流互动。该模型通过独特的方法融合了多个优秀模型的优势,在相关评测中展现出了出色的性能。
🚀 快速开始
下载依赖
git clone https://github.com/tosiyuki/vlm-chat-vector-ja.git
推理
import requests
import torch
import transformers
from PIL import Image
from transformers.generation.streamers import TextStreamer
from llava.constants import DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.language_model.llava_llama import LlavaLlamaForCausalLM
from llava.mm_utils import tokenizer_image_token, process_images
if __name__ == "__main__":
model_path = 'toshi456/chat-vector-llava-v1.5-7b-ja'
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.bfloat16 if device=="cuda" else torch.float32
model = LlavaLlamaForCausalLM.from_pretrained(
model_path,
device_map=device,
low_cpu_mem_usage=True,
use_safetensors=True,
torch_dtype=torch.float16,
).eval()
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_path,
model_max_length=1024,
padding_side="right",
use_fast=False,
)
model.get_model().vision_tower.load_model()
model = model.to(device)
eos_token_id_list = [
tokenizer.eos_token_id,
tokenizer.bos_token_id,
]
# image pre-process
image_url = "https://huggingface.co/rinna/bilingual-gpt-neox-4b-minigpt4/resolve/main/sample.jpg"
image = Image.open(requests.get(image_url, stream=True).raw).convert('RGB')
if not isinstance(image, list):
image = [image]
image_tensor = process_images(image, model.get_model().vision_tower.image_processor, model.config)
if type(image_tensor) is list:
image_tensor = [image.to(model.device, dtype=torch.float16) for image in image_tensor]
else:
image_tensor = image_tensor.to(model.device, dtype=torch.float16)
# create prompt
# ユーザー: <image>\n{prompt}
conv_mode = "llava_llama_2"
conv = conv_templates[conv_mode].copy()
prompt = "猫の隣には何がありますか?"
inp = DEFAULT_IMAGE_TOKEN + '\n' + prompt
conv.append_message(conv.roles[0], inp)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(
prompt,
tokenizer,
IMAGE_TOKEN_INDEX,
return_tensors='pt'
).unsqueeze(0)
if device == "cuda":
input_ids = input_ids.to(device)
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
streamer = TextStreamer(tokenizer, skip_prompt=True, timeout=20.0)
# parameter
temperature = 0.0
top_p = 1.0
max_new_tokens=256
# predict
with torch.inference_mode():
model.generate(
inputs=input_ids,
images=image_tensor,
do_sample=True if temperature > 0 else False,
temperature=temperature,
top_p=top_p,
max_new_tokens=max_new_tokens,
streamer=streamer,
use_cache=True,
eos_token_id=eos_token_id_list,
)
"""猫の隣には、コンピューター(パソコン)があります。<s>"""
✨ 主要特性
模型类型
Chat-Vector-LLaVA-v1.5-7b-JA是一款视觉语言模型,能够以日语对输入图像进行交流。该模型通过Chat Vector方法,对llava-v1.5-7b、Llama-2-7b-hf和ELYZA-japanese-Llama-2-7b这三个模型的权重进行加減算而创建,具体公式如下:
ELYZA-japanese-Llama-2-7b + (llava-v1.5-7b - Llama-2-7b-hf)
视觉语言模型对比
模型 | JA-VG-VQA-500 (ROUGE-L) |
JA-VLM-Bench-In-the-Wild (ROUGE-L) |
Heron-Bench(Detail) | Heron-Bench(Conv) | Heron-Bench(Complex) | Heron-Bench(Average) |
---|---|---|---|---|---|---|
Japanese Stable VLM | - | 40.50 | 25.15 | 51.23 | 37.84 | 38.07 |
EvoVLM-JP-v1-7B | 19.70 | 51.25 | 50.31 | 44.42 | 40.47 | 45.07 |
Heron BLIP Japanese StableLM Base 7B llava-620k | 14.51 | 33.26 | 49.09 | 41.51 | 45.72 | 45.44 |
Heron GIT Japanese StableLM Base 7B | 15.18 | 37.82 | 42.77 | 54.20 | 43.53 | 46.83 |
llava-jp-1.3b-v1.0-620k | 12.69 | 44.58 | 51.21 | 41.05 | 45.95 | 44.84 |
llava-jp-1.3b-v1.1 | 13.33 | 44.40 | 50.00 | 51.83 | 48.98 | 50.39 |
chat-vector-llava-v1.5-7b-ja | 18.64 | 42.23 | 53.61 | 44.36 | 44.48 | 46.10 |
📚 详细文档
注意事项
⚠️ 重要提示
演示代码在transformers的4.34.1版本中可以正常运行,但在4.37.2版本中无法正常工作。中间版本和最新版本尚未进行测试。
🔗 致谢
📄 许可证
本模型采用cc-by-nc-4.0许可证。
Clip Vit Large Patch14
CLIP是由OpenAI开发的视觉-语言模型,通过对比学习将图像和文本映射到共享的嵌入空间,支持零样本图像分类
图像生成文本
C
openai
44.7M
1,710
Clip Vit Base Patch32
CLIP是由OpenAI开发的多模态模型,能够理解图像和文本之间的关系,支持零样本图像分类任务。
图像生成文本
C
openai
14.0M
666
Siglip So400m Patch14 384
Apache-2.0
SigLIP是基于WebLi数据集预训练的视觉语言模型,采用改进的sigmoid损失函数,优化了图像-文本匹配任务。
图像生成文本
Transformers

S
google
6.1M
526
Clip Vit Base Patch16
CLIP是由OpenAI开发的多模态模型,通过对比学习将图像和文本映射到共享的嵌入空间,实现零样本图像分类能力。
图像生成文本
C
openai
4.6M
119
Blip Image Captioning Base
Bsd-3-clause
BLIP是一个先进的视觉-语言预训练模型,擅长图像描述生成任务,支持条件式和非条件式文本生成。
图像生成文本
Transformers

B
Salesforce
2.8M
688
Blip Image Captioning Large
Bsd-3-clause
BLIP是一个统一的视觉-语言预训练框架,擅长图像描述生成任务,支持条件式和无条件式图像描述生成。
图像生成文本
Transformers

B
Salesforce
2.5M
1,312
Openvla 7b
MIT
OpenVLA 7B是一个基于Open X-Embodiment数据集训练的开源视觉-语言-动作模型,能够根据语言指令和摄像头图像生成机器人动作。
图像生成文本
Transformers 英语

O
openvla
1.7M
108
Llava V1.5 7b
LLaVA 是一款开源多模态聊天机器人,基于 LLaMA/Vicuna 微调,支持图文交互。
图像生成文本
Transformers

L
liuhaotian
1.4M
448
Vit Gpt2 Image Captioning
Apache-2.0
这是一个基于ViT和GPT2架构的图像描述生成模型,能够为输入图像生成自然语言描述。
图像生成文本
Transformers

V
nlpconnect
939.88k
887
Blip2 Opt 2.7b
MIT
BLIP-2是一个视觉语言模型,结合了图像编码器和大型语言模型,用于图像到文本的生成任务。
图像生成文本
Transformers 英语

B
Salesforce
867.78k
359
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98