🚀 YOLOv5烟雾目标检测模型
本项目基于YOLOv5实现烟雾目标检测,在特定数据集上取得了高精度的检测效果,可用于各类需要烟雾检测的视觉场景。
🚀 快速开始
安装依赖
安装 yolov5:
pip install -U yolov5
加载模型并进行预测
import yolov5
model = yolov5.load('keremberke/yolov5s-smoke')
model.conf = 0.25
model.iou = 0.45
model.agnostic = False
model.multi_label = False
model.max_det = 1000
img = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
results = model(img, size=640)
results = model(img, augment=True)
predictions = results.pred[0]
boxes = predictions[:, :4]
scores = predictions[:, 4]
categories = predictions[:, 5]
results.show()
results.save(save_dir='results/')
在自定义数据集上微调模型
yolov5 train --data data.yaml --img 640 --batch 16 --weights keremberke/yolov5s-smoke --epochs 10
💻 使用示例
基础用法
import yolov5
model = yolov5.load('keremberke/yolov5s-smoke')
img = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
results = model(img, size=640)
results.show()
高级用法
import yolov5
model = yolov5.load('keremberke/yolov5s-smoke')
model.conf = 0.25
model.iou = 0.45
model.agnostic = False
model.multi_label = False
model.max_det = 1000
img = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
results = model(img, augment=True)
predictions = results.pred[0]
boxes = predictions[:, :4]
scores = predictions[:, 4]
categories = predictions[:, 5]
results.save(save_dir='results/')
📄 模型信息
属性 |
详情 |
模型类型 |
YOLOv5 |
训练数据 |
keremberke/smoke-object-detection |
📊 评估指标
在 keremberke/smoke-object-detection
数据集的验证集上,模型的 mAP@0.5
指标为 0.9945003736307544
。