Segformer B0 Finetuned Batch1w5 15Dec
基于SegFormer架构的轻量级图像分割模型,在特定数据集上微调,擅长高精度像素级分类任务
下载量 15
发布时间 : 12/14/2024
模型简介
该模型是SegFormer-B0的微调版本,专门用于图像分割任务。在评估中表现出优异的交并比和准确率指标,特别在异常检测方面有良好表现。
模型特点
高精度分割
在评估集上达到0.9143的平均交并比和0.9529的平均准确率
异常检测优势
专门优化的异常检测能力,异常交并比达0.8302
轻量级架构
基于SegFormer-B0的轻量级设计,适合资源受限环境
模型能力
图像语义分割
像素级分类
异常区域检测
高分辨率图像处理
使用案例
工业检测
产品缺陷检测
识别制造产品表面的异常区域
异常检测准确率90.66%
医学影像
病变区域分割
在医学图像中标记异常组织区域
🚀 segformer-b0-finetuned-batch1w5-15Dec
本模型是基于 PushkarA07/segformer-b0-finetuned-batch2w5-15Dec 在 PushkarA07/batch1-tiles_W5 数据集上进行微调后的版本。它在评估集上取得了以下结果:
- 损失值:0.0038
- 平均交并比(Mean Iou):0.9143
- 平均准确率(Mean Accuracy):0.9529
- 总体准确率(Overall Accuracy):0.9985
- 异常准确率(Accuracy Abnormality):0.9066
- 异常交并比(Iou Abnormality):0.8302
🚀 快速开始
本模型基于 transformers
库,你可以参考该库的使用文档来加载和使用本模型。
📚 详细文档
训练过程
训练超参数
训练过程中使用了以下超参数:
- 学习率(learning_rate):6e-05
- 训练批次大小(train_batch_size):4
- 评估批次大小(eval_batch_size):4
- 随机种子(seed):42
- 优化器(optimizer):使用
adamw_torch
,其中betas=(0.9,0.999)
,epsilon=1e-08
,无额外优化器参数 - 学习率调度器类型(lr_scheduler_type):线性
- 训练轮数(num_epochs):100
训练结果
训练损失 | 轮数 | 步数 | 验证损失 | 平均交并比 | 平均准确率 | 总体准确率 | 异常准确率 | 异常交并比 |
---|---|---|---|---|---|---|---|---|
0.0085 | 0.8333 | 10 | 0.0101 | 0.8170 | 0.8872 | 0.9963 | 0.7762 | 0.6376 |
0.0097 | 1.6667 | 20 | 0.0078 | 0.8448 | 0.8888 | 0.9971 | 0.7787 | 0.6926 |
0.0102 | 2.5 | 30 | 0.0071 | 0.8563 | 0.9028 | 0.9973 | 0.8068 | 0.7153 |
0.0062 | 3.3333 | 40 | 0.0066 | 0.8618 | 0.9005 | 0.9975 | 0.8018 | 0.7262 |
0.006 | 4.1667 | 50 | 0.0062 | 0.8693 | 0.9147 | 0.9976 | 0.8304 | 0.7410 |
0.0086 | 5.0 | 60 | 0.0060 | 0.8726 | 0.9194 | 0.9976 | 0.8398 | 0.7475 |
0.0056 | 5.8333 | 70 | 0.0056 | 0.8773 | 0.9128 | 0.9978 | 0.8264 | 0.7568 |
0.0044 | 6.6667 | 80 | 0.0056 | 0.8789 | 0.9270 | 0.9978 | 0.8550 | 0.7601 |
0.0045 | 7.5 | 90 | 0.0054 | 0.8818 | 0.9239 | 0.9978 | 0.8487 | 0.7658 |
0.0087 | 8.3333 | 100 | 0.0053 | 0.8850 | 0.9347 | 0.9979 | 0.8705 | 0.7721 |
0.0045 | 9.1667 | 110 | 0.0052 | 0.8835 | 0.9150 | 0.9979 | 0.8306 | 0.7692 |
0.0051 | 10.0 | 120 | 0.0051 | 0.8888 | 0.9360 | 0.9980 | 0.8730 | 0.7798 |
0.0045 | 10.8333 | 130 | 0.0049 | 0.8904 | 0.9270 | 0.9980 | 0.8547 | 0.7827 |
0.0068 | 11.6667 | 140 | 0.0048 | 0.8904 | 0.9290 | 0.9980 | 0.8589 | 0.7828 |
0.0029 | 12.5 | 150 | 0.0048 | 0.8924 | 0.9394 | 0.9980 | 0.8799 | 0.7867 |
0.0051 | 13.3333 | 160 | 0.0048 | 0.8943 | 0.9361 | 0.9981 | 0.8731 | 0.7906 |
0.0038 | 14.1667 | 170 | 0.0047 | 0.8953 | 0.9394 | 0.9981 | 0.8796 | 0.7926 |
0.0075 | 15.0 | 180 | 0.0047 | 0.8967 | 0.9416 | 0.9981 | 0.8841 | 0.7952 |
0.0054 | 15.8333 | 190 | 0.0047 | 0.8954 | 0.9315 | 0.9981 | 0.8637 | 0.7928 |
0.0031 | 16.6667 | 200 | 0.0046 | 0.8973 | 0.9373 | 0.9981 | 0.8755 | 0.7965 |
0.0049 | 17.5 | 210 | 0.0046 | 0.8970 | 0.9300 | 0.9982 | 0.8606 | 0.7958 |
0.0049 | 18.3333 | 220 | 0.0045 | 0.9001 | 0.9430 | 0.9982 | 0.8870 | 0.8019 |
0.0038 | 19.1667 | 230 | 0.0045 | 0.9002 | 0.9485 | 0.9982 | 0.8979 | 0.8022 |
0.0074 | 20.0 | 240 | 0.0045 | 0.9009 | 0.9424 | 0.9982 | 0.8856 | 0.8036 |
0.0048 | 20.8333 | 250 | 0.0045 | 0.9008 | 0.9473 | 0.9982 | 0.8955 | 0.8034 |
0.0058 | 21.6667 | 260 | 0.0045 | 0.9011 | 0.9464 | 0.9982 | 0.8938 | 0.8039 |
0.0051 | 22.5 | 270 | 0.0044 | 0.9029 | 0.9421 | 0.9983 | 0.8850 | 0.8075 |
0.0062 | 23.3333 | 280 | 0.0043 | 0.9026 | 0.9379 | 0.9983 | 0.8766 | 0.8070 |
0.0051 | 24.1667 | 290 | 0.0044 | 0.9027 | 0.9440 | 0.9982 | 0.8888 | 0.8071 |
0.0026 | 25.0 | 300 | 0.0043 | 0.9043 | 0.9443 | 0.9983 | 0.8894 | 0.8103 |
0.007 | 25.8333 | 310 | 0.0043 | 0.9042 | 0.9498 | 0.9983 | 0.9004 | 0.8102 |
0.0041 | 26.6667 | 320 | 0.0043 | 0.9046 | 0.9454 | 0.9983 | 0.8916 | 0.8110 |
0.0045 | 27.5 | 330 | 0.0043 | 0.9048 | 0.9427 | 0.9983 | 0.8862 | 0.8114 |
0.0041 | 28.3333 | 340 | 0.0043 | 0.9055 | 0.9490 | 0.9983 | 0.8988 | 0.8128 |
0.0024 | 29.1667 | 350 | 0.0042 | 0.9064 | 0.9485 | 0.9983 | 0.8979 | 0.8145 |
0.0035 | 30.0 | 360 | 0.0042 | 0.9061 | 0.9424 | 0.9983 | 0.8856 | 0.8139 |
0.003 | 30.8333 | 370 | 0.0042 | 0.9063 | 0.9523 | 0.9983 | 0.9056 | 0.8142 |
0.0054 | 31.6667 | 380 | 0.0042 | 0.9074 | 0.9447 | 0.9983 | 0.8902 | 0.8165 |
0.0054 | 32.5 | 390 | 0.0042 | 0.9064 | 0.9480 | 0.9983 | 0.8969 | 0.8144 |
0.0041 | 33.3333 | 400 | 0.0042 | 0.9053 | 0.9471 | 0.9983 | 0.8951 | 0.8123 |
0.0059 | 34.1667 | 410 | 0.0041 | 0.9075 | 0.9439 | 0.9983 | 0.8886 | 0.8166 |
0.0027 | 35.0 | 420 | 0.0042 | 0.9066 | 0.9452 | 0.9983 | 0.8912 | 0.8149 |
0.0052 | 35.8333 | 430 | 0.0042 | 0.9074 | 0.9474 | 0.9983 | 0.8956 | 0.8165 |
0.0042 | 36.6667 | 440 | 0.0041 | 0.9070 | 0.9457 | 0.9983 | 0.8922 | 0.8156 |
0.0037 | 37.5 | 450 | 0.0041 | 0.9076 | 0.9457 | 0.9983 | 0.8922 | 0.8170 |
0.0033 | 38.3333 | 460 | 0.0041 | 0.9084 | 0.9481 | 0.9984 | 0.8970 | 0.8185 |
0.0031 | 39.1667 | 470 | 0.0041 | 0.9085 | 0.9471 | 0.9984 | 0.8949 | 0.8187 |
0.0037 | 40.0 | 480 | 0.0042 | 0.9071 | 0.9543 | 0.9983 | 0.9096 | 0.8159 |
0.0048 | 40.8333 | 490 | 0.0041 | 0.9088 | 0.9500 | 0.9984 | 0.9008 | 0.8192 |
0.0042 | 41.6667 | 500 | 0.0041 | 0.9086 | 0.9474 | 0.9984 | 0.8957 | 0.8188 |
0.0024 | 42.5 | 510 | 0.0040 | 0.9095 | 0.9470 | 0.9984 | 0.8948 | 0.8206 |
0.0047 | 43.3333 | 520 | 0.0040 | 0.9091 | 0.9511 | 0.9984 | 0.9031 | 0.8198 |
0.0054 | 44.1667 | 530 | 0.0041 | 0.9080 | 0.9438 | 0.9984 | 0.8884 | 0.8176 |
0.0053 | 45.0 | 540 | 0.0041 | 0.9084 | 0.9460 | 0.9984 | 0.8928 | 0.8185 |
0.0033 | 45.8333 | 550 | 0.0041 | 0.9094 | 0.9515 | 0.9984 | 0.9038 | 0.8205 |
0.0044 | 46.6667 | 560 | 0.0042 | 0.9076 | 0.9580 | 0.9983 | 0.9171 | 0.8169 |
0.0021 | 47.5 | 570 | 0.0040 | 0.9095 | 0.9501 | 0.9984 | 0.9010 | 0.8206 |
0.0035 | 48.3333 | 580 | 0.0040 | 0.9092 | 0.9529 | 0.9983 | 0.9067 | 0.8200 |
0.0038 | 49.1667 | 590 | 0.0040 | 0.9109 | 0.9505 | 0.9984 | 0.9019 | 0.8234 |
0.004 | 50.0 | 600 | 0.0041 | 0.9103 | 0.9563 | 0.9984 | 0.9134 | 0.8223 |
0.0044 | 50.8333 | 610 | 0.0040 | 0.9106 | 0.9464 | 0.9984 | 0.8936 | 0.8229 |
0.0026 | 51.6667 | 620 | 0.0040 | 0.9104 | 0.9554 | 0.9984 | 0.9116 | 0.8225 |
0.0062 | 52.5 | 630 | 0.0040 | 0.9114 | 0.9510 | 0.9984 | 0.9027 | 0.8244 |
0.0023 | 53.3333 | 640 | 0.0040 | 0.9114 | 0.9470 | 0.9984 | 0.8948 | 0.8244 |
0.0029 | 54.1667 | 650 | 0.0040 | 0.9113 | 0.9508 | 0.9984 | 0.9024 | 0.8242 |
0.0042 | 55.0 | 660 | 0.0040 | 0.9116 | 0.9528 | 0.9984 | 0.9064 | 0.8248 |
0.0044 | 55.8333 | 670 | 0.0039 | 0.9121 | 0.9519 | 0.9984 | 0.9045 | 0.8258 |
0.0016 | 56.6667 | 680 | 0.0040 | 0.9116 | 0.9514 | 0.9984 | 0.9035 | 0.8248 |
0.0044 | 57.5 | 690 | 0.0039 | 0.9116 | 0.9533 | 0.9984 | 0.9075 | 0.8248 |
0.0031 | 58.3333 | 700 | 0.0039 | 0.9118 | 0.9497 | 0.9984 | 0.9002 | 0.8253 |
0.0038 | 59.1667 | 710 | 0.0039 | 0.9119 | 0.9509 | 0.9984 | 0.9025 | 0.8254 |
0.0042 | 60.0 | 720 | 0.0040 | 0.9117 | 0.9535 | 0.9984 | 0.9078 | 0.8250 |
0.0045 | 60.8333 | 730 | 0.0039 | 0.9119 | 0.9512 | 0.9984 | 0.9032 | 0.8254 |
0.0039 | 61.6667 | 740 | 0.0039 | 0.9122 | 0.9507 | 0.9984 | 0.9022 | 0.8260 |
0.0022 | 62.5 | 750 | 0.0040 | 0.9117 | 0.9562 | 0.9984 | 0.9134 | 0.8250 |
0.0039 | 63.3333 | 760 | 0.0039 | 0.9126 | 0.9502 | 0.9984 | 0.9012 | 0.8268 |
0.0031 | 64.1667 | 770 | 0.0039 | 0.9115 | 0.9507 | 0.9984 | 0.9021 | 0.8245 |
0.0037 | 65.0 | 780 | 0.0040 | 0.9118 | 0.9533 | 0.9984 | 0.9074 | 0.8252 |
0.0046 | 65.8333 | 790 | 0.0039 | 0.9123 | 0.9489 | 0.9984 | 0.8986 | 0.8261 |
0.0026 | 66.6667 | 800 | 0.0039 | 0.9127 | 0.9532 | 0.9984 | 0.9073 | 0.8269 |
0.0039 | 67.5 | 810 | 0.0039 | 0.9121 | 0.9469 | 0.9984 | 0.8946 | 0.8258 |
0.0025 | 68.3333 | 820 | 0.0039 | 0.9121 | 0.9541 | 0.9984 | 0.9091 | 0.8259 |
0.0044 | 69.1667 | 830 | 0.0039 | 0.9127 | 0.9531 | 0.9984 | 0.9069 | 0.8270 |
0.0049 | 70.0 | 840 | 0.0039 | 0.9123 | 0.9546 | 0.9984 | 0.9100 | 0.8263 |
0.0038 | 70.8333 | 850 | 0.0039 | 0.9129 | 0.9527 | 0.9984 | 0.9062 | 0.8273 |
0.0053 | 71.6667 | 860 | 0.0039 | 0.9131 | 0.9534 | 0.9984 | 0.9077 | 0.8278 |
0.0049 | 72.5 | 870 | 0.0039 | 0.9128 | 0.9538 | 0.9984 | 0.9083 | 0.8272 |
0.003 | 73.3333 | 880 | 0.0039 | 0.9130 | 0.9503 | 0.9984 | 0.9012 | 0.8276 |
0.0025 | 74.1667 | 890 | 0.0039 | 0.9124 | 0.9583 | 0.9984 | 0.9176 | 0.8264 |
0.0035 | 75.0 | 900 | 0.0039 | 0.9131 | 0.9509 | 0.9984 | 0.9026 | 0.8278 |
0.0028 | 75.8333 | 910 | 0.0039 | 0.9128 | 0.9559 | 0.9984 | 0.9127 | 0.8272 |
0.0027 | 76.6667 | 920 | 0.0039 | 0.9128 | 0.9528 | 0.9984 | 0.9064 | 0.8272 |
0.0033 | 77.5 | 930 | 0.0039 | 0.9133 | 0.9539 | 0.9984 | 0.9086 | 0.8282 |
0.0033 | 78.3333 | 940 | 0.0039 | 0.9135 | 0.9529 | 0.9984 | 0.9065 | 0.8285 |
0.0056 | 79.1667 | 950 | 0.0039 | 0.9134 | 0.9529 | 0.9984 | 0.9067 | 0.8283 |
0.0063 | 80.0 | 960 | 0.0039 | 0.9132 | 0.9495 | 0.9984 | 0.8996 | 0.8279 |
0.0057 | 80.8333 | 970 | 0.0039 | 0.9130 | 0.9563 | 0.9984 | 0.9134 | 0.8276 |
0.0021 | 81.6667 | 980 | 0.0039 | 0.9136 | 0.9511 | 0.9985 | 0.9029 | 0.8287 |
0.0043 | 82.5 | 990 | 0.0039 | 0.9130 | 0.9563 | 0.9984 | 0.9136 | 0.8275 |
0.0048 | 83.3333 | 1000 | 0.0039 | 0.9137 | 0.9525 | 0.9984 | 0.9057 | 0.8289 |
0.0043 | 84.1667 | 1010 | 0.0039 | 0.9133 | 0.9514 | 0.9984 | 0.9035 | 0.8282 |
0.0037 | 85.0 | 1020 | 0.0039 | 0.9137 | 0.9542 | 0.9984 | 0.9092 | 0.8289 |
0.0042 | 85.8333 | 1030 | 0.0038 | 0.9137 | 0.9501 | 0.9985 | 0.9010 | 0.8290 |
0.0039 | 86.6667 | 1040 | 0.0039 | 0.9138 | 0.9550 | 0.9984 | 0.9108 | 0.8292 |
0.0027 | 87.5 | 1050 | 0.0038 | 0.9139 | 0.9517 | 0.9985 | 0.9041 | 0.8294 |
0.0034 | 88.3333 | 1060 | 0.0038 | 0.9138 | 0.9526 | 0.9985 | 0.9060 | 0.8291 |
0.0037 | 89.1667 | 1070 | 0.0039 | 0.9137 | 0.9550 | 0.9984 | 0.9109 | 0.8289 |
0.0029 | 90.0 | 1080 | 0.0038 | 0.9141 | 0.9509 | 0.9985 | 0.9025 | 0.8297 |
0.0038 | 90.8333 | 1090 | 0.0038 | 0.9139 | 0.9535 | 0.9985 | 0.9078 | 0.8294 |
0.0066 | 91.6667 | 1100 | 0.0039 | 0.9138 | 0.9545 | 0.9984 | 0.9097 | 0.8292 |
0.0037 | 92.5 | 1110 | 0.0039 | 0.9138 | 0.9547 | 0.9984 | 0.9102 | 0.8292 |
0.0053 | 93.3333 | 1120 | 0.0038 | 0.9143 | 0.9518 | 0.9985 | 0.9044 | 0.8301 |
0.0039 | 94.1667 | 1130 | 0.0038 | 0.9141 | 0.9523 | 0.9985 | 0.9054 | 0.8298 |
0.0049 | 95.0 | 1140 | 0.0038 | 0.9143 | 0.9520 | 0.9985 | 0.9047 | 0.8302 |
0.004 | 95.8333 | 1150 | 0.0038 | 0.9142 | 0.9535 | 0.9985 | 0.9077 | 0.8300 |
0.0033 | 96.6667 | 1160 | 0.0038 | 0.9142 | 0.9536 | 0.9985 | 0.9080 | 0.8300 |
0.0037 | 97.5 | 1170 | 0.0038 | 0.9141 | 0.9536 | 0.9985 | 0.9079 | 0.8298 |
0.0036 | 98.3333 | 1180 | 0.0038 | 0.9140 | 0.9536 | 0.9985 | 0.9080 | 0.8295 |
0.0042 | 99.1667 | 1190 | 0.0038 | 0.9141 | 0.9538 | 0.9985 | 0.9085 | 0.8298 |
0.0035 | 100.0 | 1200 | 0.0038 | 0.9143 | 0.9529 | 0.9985 | 0.9066 | 0.8302 |
框架版本
Transformers
:4.46.3Pytorch
:2.5.1+cu121Datasets
:3.2.0Tokenizers
:0.20.3
📄 许可证
本模型使用的许可证为 other
。具体的许可条款请参考相关文档。
Clipseg Rd64 Refined
Apache-2.0
CLIPSeg是一种基于文本与图像提示的图像分割模型,支持零样本和单样本图像分割任务。
图像分割
Transformers

C
CIDAS
10.0M
122
RMBG 1.4
其他
BRIA RMBG v1.4 是一款先进的背景移除模型,专为高效分离各类图像的前景与背景而设计,适用于非商业用途。
图像分割
Transformers

R
briaai
874.12k
1,771
RMBG 2.0
其他
BRIA AI开发的最新背景移除模型,能有效分离各类图像的前景与背景,适合大规模商业内容创作场景。
图像分割
Transformers

R
briaai
703.33k
741
Segformer B2 Clothes
MIT
基于ATR数据集微调的SegFormer模型,用于服装和人体分割
图像分割
Transformers

S
mattmdjaga
666.39k
410
Sam Vit Base
Apache-2.0
SAM是一个能够通过输入提示(如点或框)生成高质量对象掩码的视觉模型,支持零样本分割任务
图像分割
Transformers 其他

S
facebook
635.09k
137
Birefnet
MIT
BiRefNet是一个用于高分辨率二分图像分割的深度学习模型,通过双边参考网络实现精确的图像分割。
图像分割
Transformers

B
ZhengPeng7
626.54k
365
Segformer B1 Finetuned Ade 512 512
其他
SegFormer是一种基于Transformer的语义分割模型,在ADE20K数据集上进行了微调,适用于图像分割任务。
图像分割
Transformers

S
nvidia
560.79k
6
Sam Vit Large
Apache-2.0
SAM是一个能够通过输入提示点或边界框生成高质量物体掩膜的视觉模型,具备零样本迁移能力。
图像分割
Transformers 其他

S
facebook
455.43k
28
Face Parsing
基于nvidia/mit-b5微调的语义分割模型,用于面部解析任务
图像分割
Transformers 英语

F
jonathandinu
398.59k
157
Sam Vit Huge
Apache-2.0
SAM是一个能够根据输入提示生成高质量对象掩码的视觉模型,支持零样本迁移到新任务
图像分割
Transformers 其他

S
facebook
324.78k
163
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98