🚀 eva02_base_patch14_224.mim_in22k模型卡片
这是一个EVA02特征/表征模型。由论文作者使用掩码图像建模(以EVA - CLIP作为MIM教师)在ImageNet - 22k上进行预训练。
EVA - 02模型是带有均值池化、SwiGLU、旋转位置嵌入(ROPE)以及在MLP中使用额外LN(针对Base和Large版本)的视觉变换器。
注意:为了与其他模型保持一致,timm
检查点采用float32格式。在某些情况下,原始检查点为float16或bfloat16,如果有此需求,请查看原始版本。
✨ 主要特性
- 模型类型:图像分类/特征主干
- 模型统计信息:
- 参数数量(M):85.8
- GMACs:23.2
- 激活值(M):36.6
- 图像尺寸:224 x 224
- 相关论文:
- EVA - 02: A Visual Representation for Neon Genesis: https://arxiv.org/abs/2303.11331
- EVA - CLIP: Improved Training Techniques for CLIP at Scale: https://arxiv.org/abs/2303.15389
- 原始资源:
- https://github.com/baaivision/EVA
- https://huggingface.co/Yuxin - CV/EVA - 02
- 预训练数据集:ImageNet - 22k
📦 安装指南
文档中未提及安装步骤,若需使用eva02_base_patch14_224.mim_in22k
模型,可参考timm
库的安装方式,一般可使用以下命令:
pip install timm
💻 使用示例
基础用法
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('eva02_base_patch14_224.mim_in22k', pretrained=True)
model = model.eval()
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0))
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
高级用法
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'eva02_base_patch14_224.mim_in22k',
pretrained=True,
num_classes=0,
)
model = model.eval()
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0))
output = model.forward_features(transforms(img).unsqueeze(0))
output = model.forward_head(output, pre_logits=True)
📚 详细文档
可在timm 模型结果中查看该模型的数据集和运行时指标。
属性 |
详情 |
模型类型 |
图像分类/特征主干 |
训练数据 |
ImageNet - 22k |
模型对比
模型 |
前1准确率 |
前5准确率 |
参数数量(M) |
图像尺寸 |
eva02_large_patch14_448.mim_m38m_ft_in22k_in1k |
90.054 |
99.042 |
305.08 |
448 |
eva02_large_patch14_448.mim_in22k_ft_in22k_in1k |
89.946 |
99.01 |
305.08 |
448 |
eva_giant_patch14_560.m30m_ft_in22k_in1k |
89.792 |
98.992 |
1014.45 |
560 |
eva02_large_patch14_448.mim_in22k_ft_in1k |
89.626 |
98.954 |
305.08 |
448 |
eva02_large_patch14_448.mim_m38m_ft_in1k |
89.57 |
98.918 |
305.08 |
448 |
eva_giant_patch14_336.m30m_ft_in22k_in1k |
89.56 |
98.956 |
1013.01 |
336 |
eva_giant_patch14_336.clip_ft_in1k |
89.466 |
98.82 |
1013.01 |
336 |
eva_large_patch14_336.in22k_ft_in22k_in1k |
89.214 |
98.854 |
304.53 |
336 |
eva_giant_patch14_224.clip_ft_in1k |
88.882 |
98.678 |
1012.56 |
224 |
eva02_base_patch14_448.mim_in22k_ft_in22k_in1k |
88.692 |
98.722 |
87.12 |
448 |
eva_large_patch14_336.in22k_ft_in1k |
88.652 |
98.722 |
304.53 |
336 |
eva_large_patch14_196.in22k_ft_in22k_in1k |
88.592 |
98.656 |
304.14 |
196 |
eva02_base_patch14_448.mim_in22k_ft_in1k |
88.23 |
98.564 |
87.12 |
448 |
eva_large_patch14_196.in22k_ft_in1k |
87.934 |
98.504 |
304.14 |
196 |
eva02_small_patch14_336.mim_in22k_ft_in1k |
85.74 |
97.614 |
22.13 |
336 |
eva02_tiny_patch14_336.mim_in22k_ft_in1k |
80.658 |
95.524 |
5.76 |
336 |
📄 许可证
本项目采用MIT许可证。
📖 引用信息
@article{EVA02,
title={EVA-02: A Visual Representation for Neon Genesis},
author={Fang, Yuxin and Sun, Quan and Wang, Xinggang and Huang, Tiejun and Wang, Xinlong and Cao, Yue},
journal={arXiv preprint arXiv:2303.11331},
year={2023}
}
@article{EVA-CLIP,
title={EVA-02: A Visual Representation for Neon Genesis},
author={Sun, Quan and Fang, Yuxin and Wu, Ledell and Wang, Xinlong and Cao, Yue},
journal={arXiv preprint arXiv:2303.15389},
year={2023}
}
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}