🚀 vit_large_patch14_reg4_dinov2.lvd142m模型卡
这是一个带有寄存器的视觉变换器(ViT)图像特征模型,使用自监督的DINOv2方法在LVD - 142M数据集上进行预训练,可用于图像特征提取。
🚀 快速开始
本模型是一个基于视觉变换器(ViT)架构的图像特征模型,带有寄存器,在LVD - 142M数据集上进行了自监督预训练。下面将介绍如何使用该模型进行图像分类和提取图像嵌入。
✨ 主要特性
- 模型类型:可用于图像分类或作为特征提取的骨干网络。
- 预训练:使用自监督的DINOv2方法在LVD - 142M数据集上进行预训练。
📦 安装指南
文档未提及安装步骤,跳过此章节。
💻 使用示例
基础用法
图像分类
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('vit_large_patch14_reg4_dinov2.lvd142m', pretrained=True)
model = model.eval()
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0))
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
图像嵌入
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'vit_large_patch14_reg4_dinov2.lvd142m',
pretrained=True,
num_classes=0,
)
model = model.eval()
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0))
output = model.forward_features(transforms(img).unsqueeze(0))
output = model.forward_head(output, pre_logits=True)
📚 详细文档
模型详情
模型比较
可以在timm 模型结果中查看该模型的数据集和运行时指标。
🔧 技术细节
文档未提供具体技术实现细节,跳过此章节。
📄 许可证
本模型使用Apache - 2.0许可证。
📚 引用
@article{darcet2023vision,
title={Vision Transformers Need Registers},
author={Darcet, Timoth{'e}e and Oquab, Maxime and Mairal, Julien and Bojanowski, Piotr},
journal={arXiv preprint arXiv:2309.16588},
year={2023}
}
@misc{oquab2023dinov2,
title={DINOv2: Learning Robust Visual Features without Supervision},
author={Oquab, Maxime and Darcet, Timothée and Moutakanni, Theo and Vo, Huy V. and Szafraniec, Marc and Khalidov, Vasil and Fernandez, Pierre and Haziza, Daniel and Massa, Francisco and El-Nouby, Alaaeldin and Howes, Russell and Huang, Po-Yao and Xu, Hu and Sharma, Vasu and Li, Shang-Wen and Galuba, Wojciech and Rabbat, Mike and Assran, Mido and Ballas, Nicolas and Synnaeve, Gabriel and Misra, Ishan and Jegou, Herve and Mairal, Julien and Labatut, Patrick and Joulin, Armand and Bojanowski, Piotr},
journal={arXiv:2304.07193},
year={2023}
}
@article{dosovitskiy2020vit,
title={An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale},
author={Dosovitskiy, Alexey and Beyer, Lucas and Kolesnikov, Alexander and Weissenborn, Dirk and Zhai, Xiaohua and Unterthiner, Thomas and Dehghani, Mostafa and Minderer, Matthias and Heigold, Georg and Gelly, Sylvain and Uszkoreit, Jakob and Houlsby, Neil},
journal={ICLR},
year={2021}
}
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}