🚀 vit_base_patch16_224.mae 模型卡
这是一个基于视觉变换器(ViT)的图像特征模型,使用自监督掩码自编码器(MAE)方法在 ImageNet-1k 数据集上进行了预训练,可用于图像特征提取等任务。
🚀 快速开始
本模型是一个基于视觉变换器(ViT)的图像特征模型,使用自监督掩码自编码器(MAE)方法在 ImageNet-1k 数据集上进行了预训练。下面将介绍其使用方法。
✨ 主要特性
💻 使用示例
基础用法
图像分类
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('vit_base_patch16_224.mae', pretrained=True)
model = model.eval()
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0))
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
图像嵌入
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'vit_base_patch16_224.mae',
pretrained=True,
num_classes=0,
)
model = model.eval()
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0))
output = model.forward_features(transforms(img).unsqueeze(0))
output = model.forward_head(output, pre_logits=True)
📚 详细文档
可在 timm 模型结果 中查看该模型的数据集和运行时指标。
📄 许可证
本模型采用 CC BY-NC 4.0 许可证。
📖 引用
@Article{MaskedAutoencoders2021,
author = {Kaiming He and Xinlei Chen and Saining Xie and Yanghao Li and Piotr Doll{'a}r and Ross Girshick},
journal = {arXiv:2111.06377},
title = {Masked Autoencoders Are Scalable Vision Learners},
year = {2021},
}
@article{dosovitskiy2020vit,
title={An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale},
author={Dosovitskiy, Alexey and Beyer, Lucas and Kolesnikov, Alexander and Weissenborn, Dirk and Zhai, Xiaohua and Unterthiner, Thomas and Dehghani, Mostafa and Minderer, Matthias and Heigold, Georg and Gelly, Sylvain and Uszkoreit, Jakob and Houlsby, Neil},
journal={ICLR},
year={2021}
}
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}