🚀 ViT - SO400M - 14 - SigLIP模型卡片
本项目是一个基于WebLI数据集训练的SigLIP(用于语言 - 图像预训练的Sigmoid损失函数)模型。该模型从Big Vision的原始JAX检查点转换为PyTorch格式,其权重可在OpenCLIP(图像 + 文本)和timm(仅图像)中使用。
🚀 快速开始
本模型是在WebLI数据集上训练的SigLIP模型,已从原始JAX检查点转换为PyTorch格式,可用于OpenCLIP和timm。
✨ 主要特性
- 模型类型为对比图像 - 文本、零样本图像分类。
- 原始模型来自:https://github.com/google-research/big_vision
- 训练数据集为WebLI。
- 相关论文:Sigmoid loss for language image pre - training: https://arxiv.org/abs/2303.15343
📦 安装指南
文档中未提及具体安装步骤,可参考相关库(如OpenCLIP、timm)的官方文档进行安装。
💻 使用示例
基础用法
使用OpenCLIP
import torch
import torch.nn.functional as F
from urllib.request import urlopen
from PIL import Image
from open_clip import create_model_from_pretrained, get_tokenizer
model, preprocess = create_model_from_pretrained('hf-hub:timm/ViT-SO400M-14-SigLIP')
tokenizer = get_tokenizer('hf-hub:timm/ViT-SO400M-14-SigLIP')
image = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
image = preprocess(image).unsqueeze(0)
labels_list = ["a dog", "a cat", "a donut", "a beignet"]
text = tokenizer(labels_list, context_length=model.context_length)
with torch.no_grad(), torch.cuda.amp.autocast():
image_features = model.encode_image(image)
text_features = model.encode_text(text)
image_features = F.normalize(image_features, dim=-1)
text_features = F.normalize(text_features, dim=-1)
text_probs = torch.sigmoid(image_features @ text_features.T * model.logit_scale.exp() + model.logit_bias)
zipped_list = list(zip(labels_list, [round(p.item(), 3) for p in text_probs[0]]))
print("Label probabilities: ", zipped_list)
使用timm
(用于图像嵌入)
from urllib.request import urlopen
from PIL import Image
import timm
image = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'vit_so400m_patch14_siglip_224',
pretrained=True,
num_classes=0,
)
model = model.eval()
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(image).unsqueeze(0))
📚 详细文档
属性 |
详情 |
模型类型 |
对比图像 - 文本、零样本图像分类 |
原始模型地址 |
https://github.com/google-research/big_vision |
训练数据 |
WebLI |
相关论文 |
Sigmoid loss for language image pre - training: https://arxiv.org/abs/2303.15343 |
📄 许可证
本模型使用的许可证为apache - 2.0。
📖 引用
@article{zhai2023sigmoid,
title={Sigmoid loss for language image pre-training},
author={Zhai, Xiaohua and Mustafa, Basil and Kolesnikov, Alexander and Beyer, Lucas},
journal={arXiv preprint arXiv:2303.15343},
year={2023}
}
@misc{big_vision,
author = {Beyer, Lucas and Zhai, Xiaohua and Kolesnikov, Alexander},
title = {Big Vision},
year = {2022},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/google-research/big_vision}}
}