🚀 基于DataComp 1B的预训练ViT - B/16 ProLIP官方实现
本项目是基于DataComp 1B数据集,对ViT - B/16模型进行概率语言 - 图像预训练(ProLIP)的官方实现。该预训练权重在图像分类、检索等零样本任务中表现出色,为相关领域的研究和应用提供了强大的支持。
🚀 快速开始
环境准备
确保你已经安装了必要的库:
import requests
from PIL import Image
import torch
from prolip.model import ProLIPHF
from transformers import CLIPProcessor
from prolip.tokenizer import HFTokenizer
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
模型加载
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16")
model = ProLIPHF.from_pretrained("SanghyukChun/ProLIP-ViT-B-16-DC-1B-12_8M")
tokenizer = HFTokenizer("timm/ViT-B-16-SigLIP", context_length=64, clean="canonicalize")
示例代码
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(images=image, return_tensors="pt", padding=True)
texts = ["A couple of cats laying on top of a pink blanket.", "A man walks through a flooded road during a rainstorm", "photo"]
texts = tokenizer(texts)
outputs = model(image=inputs["pixel_values"], text=texts)
l2_logit = outputs["image_features"]["mean"] @ outputs["text_features"]["mean"].T
i_unc = torch.exp(outputs["image_features"]["std"]).sum(dim=-1)
t_unc = torch.exp(outputs["text_features"]["std"]).sum(dim=-1)
csd_logit = l2_logit - 0.5 * t_unc
csd_logit2 = l2_logit.T - 0.5 * i_unc
print("Mean-only image-to-text logits (by L2 distance):", l2_logit)
print("Uncertainty-aware image-to-text logits (by CSD):", csd_logit)
print("Uncertainty-aware text-to-image logits (by CSD):", csd_logit2.T)
print("Image uncertainty: ", i_unc)
print("Text uncertainty: ", t_unc)
✨ 主要特性
- 预训练模型:本权重是通过概率语言 - 图像预训练(ProLIP)得到的预训练ViT - B/16模型。
- 预训练数据集:使用DataComp 1B数据集,可见样本达128亿。
- 多任务表现出色:在零样本图像分类、零样本图像分布偏移、零样本VTAB任务、零样本检索等任务上均有良好表现。
📚 详细文档
项目概述
性能概述
任务类型 |
准确率 |
零样本ImageNet - 1k top - 1准确率 |
74.6% |
零样本ImageNet分布偏移 |
63.0% |
零样本VTAB性能 |
63.7% |
零样本检索性能 |
59.6% |
38个任务的平均零样本性能 |
63.3% |
📄 许可证
本项目采用MIT许可证。
📚 引用
如果你使用了本项目的代码或模型,请引用以下论文:
@inproceedings{chun2025prolip,
title={Probabilistic Language-Image Pre-Training},
author={Chun, Sanghyuk and Kim, Wonjae and Park, Song and Yun, Sangdoo},
year={2025},
booktitle={International Conference on Learning Representations (ICLR)},
}
@inproceedings{chun2025longprolip,
title={LongProLIP: A Probabilistic Vision-Language Model with Long Context Text},
author={Chun, Sanghyuk and Yun, Sangdoo},
year={2025},
booktitle={ICLR Workshop on Quantify Uncertainty and Hallucination in Foundation Models},
}