🚀 InternViT-6B-224px
InternViT-6B-224px 是一款用于图像特征提取的视觉基础模型,可作为特征骨干网络,在图像特征提取等任务中发挥重要作用。
[📂 GitHub] [📜 InternVL 1.0] [📜 InternVL 1.5] [📜 Mini-InternVL] [📜 InternVL 2.5]
[🆕 Blog] [🗨️ Chat Demo] [🤗 HF Demo] [🚀 Quick Start] [📖 Documents]
🚀 快速开始
你可以通过以下链接快速了解和使用该模型:
✨ 主要特性
模型信息
属性 |
详情 |
模型类型 |
视觉基础模型,特征骨干网络 |
模型参数(M) |
5903 |
图像尺寸 |
224 x 224 |
预训练数据集 |
LAION-en, LAION-COCO, COYO, CC12M, CC3M, SBU, Wukong, LAION-multi |
注意事项
本模型有 48 个块,经测试,使用倒数第四块后的输出效果最佳。因此,在使用此模型构建 VLLM 时,请使用倒数第四层的特征。
📚 详细文档
线性探测性能
线性探测评估的更多详细信息请参考 此文档。
IN-1K |
IN-ReaL |
IN-V2 |
IN-A |
IN-R |
IN-Sketch |
88.2 |
90.4 |
79.9 |
77.5 |
89.8 |
69.1 |
💻 使用示例
基础用法
import torch
from PIL import Image
from transformers import AutoModel, CLIPImageProcessor
model = AutoModel.from_pretrained(
'OpenGVLab/InternViT-6B-224px',
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True).cuda().eval()
image = Image.open('./examples/image1.jpg').convert('RGB')
image_processor = CLIPImageProcessor.from_pretrained('OpenGVLab/InternViT-6B-224px')
pixel_values = image_processor(images=image, return_tensors='pt').pixel_values
pixel_values = pixel_values.to(torch.bfloat16).cuda()
outputs = model(pixel_values)
📄 许可证
本项目采用 MIT 许可证。
📜 引用
如果您在研究中发现本项目有用,请考虑引用以下文献:
@article{chen2024expanding,
title={Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling},
author={Chen, Zhe and Wang, Weiyun and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Cui, Erfei and Zhu, Jinguo and Ye, Shenglong and Tian, Hao and Liu, Zhaoyang and others},
journal={arXiv preprint arXiv:2412.05271},
year={2024}
}
@article{gao2024mini,
title={Mini-internvl: A flexible-transfer pocket multimodal model with 5\% parameters and 90\% performance},
author={Gao, Zhangwei and Chen, Zhe and Cui, Erfei and Ren, Yiming and Wang, Weiyun and Zhu, Jinguo and Tian, Hao and Ye, Shenglong and He, Junjun and Zhu, Xizhou and others},
journal={arXiv preprint arXiv:2410.16261},
year={2024}
}
@article{chen2024far,
title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
journal={arXiv preprint arXiv:2404.16821},
year={2024}
}
@inproceedings{chen2024internvl,
title={Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks},
author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and others},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={24185--24198},
year={2024}
}