🚀 CAMeLBERT-Mix NER模型
CAMeLBERT-Mix NER模型是一个命名实体识别(NER)模型,旨在解决阿拉伯语命名实体识别的问题,为阿拉伯语自然语言处理提供了有效的工具,提升了相关任务的处理效率和准确性。
🚀 快速开始
你可以直接将CAMeLBERT-Mix NER模型作为我们 CAMeL Tools NER组件的一部分使用(推荐),也可以将其作为transformers管道的一部分使用。
✨ 主要特性
💻 使用示例
基础用法
若要将该模型与 CAMeL Tools NER组件一起使用:
>>> from camel_tools.ner import NERecognizer
>>> from camel_tools.tokenizers.word import simple_word_tokenize
>>> ner = NERecognizer('CAMeL-Lab/bert-base-arabic-camelbert-mix-ner')
>>> sentence = simple_word_tokenize('إمارة أبوظبي هي إحدى إمارات دولة الإمارات العربية المتحدة السبع')
>>> ner.predict_sentence(sentence)
>>> ['O', 'B-LOC', 'O', 'O', 'O', 'O', 'B-LOC', 'I-LOC', 'I-LOC', 'O']
高级用法
你也可以直接将NER模型与transformers管道一起使用:
>>> from transformers import pipeline
>>> ner = pipeline('ner', model='CAMeL-Lab/bert-base-arabic-camelbert-mix-ner')
>>> ner("إمارة أبوظبي هي إحدى إمارات دولة الإمارات العربية المتحدة السبع")
[{'word': 'أبوظبي',
'score': 0.9895730018615723,
'entity': 'B-LOC',
'index': 2,
'start': 6,
'end': 12},
{'word': 'الإمارات',
'score': 0.8156259655952454,
'entity': 'B-LOC',
'index': 8,
'start': 33,
'end': 41},
{'word': 'العربية',
'score': 0.890906810760498,
'entity': 'I-LOC',
'index': 9,
'start': 42,
'end': 49},
{'word': 'المتحدة',
'score': 0.8169114589691162,
'entity': 'I-LOC',
'index': 10,
'start': 50,
'end': 57}]
⚠️ 重要提示
要下载我们的模型,你需要 transformers>=3.5.0
。否则,你可以手动下载模型。
📚 详细文档
模型描述
CAMeLBERT-Mix NER模型 是一个命名实体识别(NER)模型,它通过对 CAMeL-Lab/bert-base-arabic-camelbert-mix 模型进行微调构建而成。在微调过程中,使用了 ANERcorp 数据集。我们的微调过程和使用的超参数可在论文 "The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models" 中找到,微调代码可在 此处 获取。
预期用途
你可以直接将CAMeLBERT-Mix NER模型作为我们 CAMeL Tools NER组件的一部分使用(推荐),也可以将其作为transformers管道的一部分使用。
📄 许可证
本项目采用Apache-2.0许可证。
📚 引用
如果你使用了该模型,请引用以下论文:
@inproceedings{inoue-etal-2021-interplay,
title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models",
author = "Inoue, Go and
Alhafni, Bashar and
Baimukan, Nurpeiis and
Bouamor, Houda and
Habash, Nizar",
booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop",
month = apr,
year = "2021",
address = "Kyiv, Ukraine (Online)",
publisher = "Association for Computational Linguistics",
abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.",
}