Ner Bert Base Cased Pt Lenerbr
这是一个针对葡萄牙语法律领域的命名实体识别(NER)模型,基于BERT基础架构微调而成,专门用于识别法律文本中的命名实体。
下载量 2,429
发布时间 : 3/2/2022
模型简介
该模型是在LeNER_br数据集上微调的BERT基础版模型,专门用于葡萄牙语法律文本中的命名实体识别任务。
模型特点
法律领域专业化
专门针对葡萄牙语法律文本进行优化,能有效识别法律文档中的命名实体
两阶段训练
先进行语言模型专业化微调,再进行NER任务微调,提高了模型质量
高性能指标
在LeNER_br数据集上达到F1值0.893的优异表现
模型能力
法律文本命名实体识别
葡萄牙语文本处理
标记分类
使用案例
法律文档处理
法律条文分析
识别法律条文中的关键实体如法律条款、机构名称等
准确识别法律文本中的各类实体
法律研究辅助
帮助法律研究人员快速提取文档中的关键信息
提高法律文档处理效率
🚀 (BERT base) 葡萄牙语法律领域命名实体识别(NER)模型
本模型是一个用于葡萄牙语法律领域的命名实体识别(NER)模型,通过在 LeNER_br 数据集上微调 pierreguillou/bert-base-cased-pt-lenerbr 模型而得到。该模型能够有效识别法律文本中的各类实体,为法律信息处理提供了有力支持。
🚀 快速开始
本模型可直接在本页面的小部件中进行测试,也可以使用 NER 应用程序 对两个 BERT 模型(基础版和大版本)在法律 LeNER-Br 数据集上的 NER 任务进行比较。
✨ 主要特性
- 专业领域适配:针对葡萄牙语法律领域进行优化,能准确识别法律文本中的实体。
- 性能表现良好:在验证数据集上取得了较高的 F1、精确率、召回率和准确率。
- 可对比性:提供了与非专业语言模型微调后的 NER 模型的性能对比。
📦 安装指南
# 安装 PyTorch,请参考 https://pytorch.org/
# !pip install transformers
from transformers import AutoModelForTokenClassification, AutoTokenizer
import torch
💻 使用示例
基础用法
# 参数设置
model_name = "pierreguillou/ner-bert-base-cased-pt-lenerbr"
model = AutoModelForTokenClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
input_text = "Acrescento que não há de se falar em violação do artigo 114, § 3º, da Constituição Federal, posto que referido dispositivo revela-se impertinente, tratando da possibilidade de ajuizamento de dissídio coletivo pelo Ministério Público do Trabalho nos casos de greve em atividade essencial."
# 分词
inputs = tokenizer(input_text, max_length=512, truncation=True, return_tensors="pt")
tokens = inputs.tokens()
# 获取预测结果
outputs = model(**inputs).logits
predictions = torch.argmax(outputs, dim=2)
# 打印预测结果
for token, prediction in zip(tokens, predictions[0].numpy()):
print((token, model.config.id2label[prediction]))
高级用法
# 可以使用 pipeline,但输入序列的 max_length 似乎存在问题
!pip install transformers
import transformers
from transformers import pipeline
model_name = "pierreguillou/ner-bert-base-cased-pt-lenerbr"
ner = pipeline(
"ner",
model=model_name
)
ner(input_text)
📚 详细文档
博客文章
可查看 NLP | Modelos e Web App para Reconhecimento de Entidade Nomeada (NER) no domínio jurídico brasileiro (29/12/2021) 了解更多信息。
模型指标
属性 | 详情 |
---|---|
模型类型 | 基于 BERT base 的命名实体识别模型 |
训练数据 | LeNER_br 数据集 |
F1 | 0.8926146010186757 |
精确率 | 0.8810222036028488 |
召回率 | 0.9045161290322581 |
准确率 | 0.9759397808828684 |
损失 | 0.18803243339061737 |
不同命名实体的验证指标
Num examples = 1177
{'JURISPRUDENCIA': {'f1': 0.7016574585635359,
'number': 657,
'precision': 0.6422250316055625,
'recall': 0.7732115677321156},
'LEGISLACAO': {'f1': 0.8839681133746677,
'number': 571,
'precision': 0.8942652329749103,
'recall': 0.8739054290718039},
'LOCAL': {'f1': 0.8253968253968254,
'number': 194,
'precision': 0.7368421052631579,
'recall': 0.9381443298969072},
'ORGANIZACAO': {'f1': 0.8934049079754601,
'number': 1340,
'precision': 0.918769716088328,
'recall': 0.8694029850746269},
'PESSOA': {'f1': 0.982653539615565,
'number': 1072,
'precision': 0.9877474081055608,
'recall': 0.9776119402985075},
'TEMPO': {'f1': 0.9657657657657657,
'number': 816,
'precision': 0.9469964664310954,
'recall': 0.9852941176470589},
'overall_accuracy': 0.9725722644643211,
'overall_f1': 0.8926146010186757,
'overall_precision': 0.8810222036028488,
'overall_recall': 0.9045161290322581}
🔧 技术细节
微调笔记本
微调的笔记本 (HuggingFace_Notebook_token_classification_NER_LeNER_Br.ipynb) 可在 GitHub 上找到。
超参数设置
批量大小、学习率等
- per_device_batch_size = 2
- gradient_accumulation_steps = 2
- learning_rate = 2e-5
- num_train_epochs = 10
- weight_decay = 0.01
- optimizer = AdamW
- betas = (0.9,0.999)
- epsilon = 1e-08
- lr_scheduler_type = linear
- seed = 7
保存模型和加载最佳模型
- save_total_limit = 2
- logging_steps = 300
- eval_steps = logging_steps
- evaluation_strategy = 'steps'
- logging_strategy = 'steps'
- save_strategy = 'steps'
- save_steps = logging_steps
- load_best_model_at_end = True
- fp16 = True
通过指标选择最佳模型
- metric_for_best_model = 'eval_f1'
- greater_is_better = True
训练结果
Num examples = 7828
Num Epochs = 10
Instantaneous batch size per device = 2
Total train batch size (w. parallel, distributed & accumulation) = 4
Gradient Accumulation steps = 2
Total optimization steps = 19570
Step Training Loss Validation Loss Precision Recall F1 Accuracy
300 0.127600 0.178613 0.722909 0.741720 0.732194 0.948802
600 0.088200 0.136965 0.733636 0.867742 0.795074 0.963079
900 0.078000 0.128858 0.791912 0.838065 0.814335 0.965243
1200 0.077800 0.126345 0.815400 0.865376 0.839645 0.967849
1500 0.074100 0.148207 0.779274 0.895914 0.833533 0.960184
1800 0.059500 0.116634 0.830829 0.868172 0.849090 0.969342
2100 0.044500 0.208459 0.887150 0.816559 0.850392 0.960535
2400 0.029400 0.136352 0.867821 0.851398 0.859531 0.970271
2700 0.025000 0.165837 0.814881 0.878495 0.845493 0.961235
3000 0.038400 0.120629 0.811719 0.893763 0.850768 0.971506
3300 0.026200 0.175094 0.823435 0.882581 0.851983 0.962957
3600 0.025600 0.178438 0.881095 0.886022 0.883551 0.963689
3900 0.041000 0.134648 0.789035 0.916129 0.847846 0.967681
4200 0.026700 0.130178 0.821275 0.903226 0.860303 0.972313
4500 0.018500 0.139294 0.844016 0.875054 0.859255 0.971140
4800 0.020800 0.197811 0.892504 0.873118 0.882705 0.965883
5100 0.019300 0.161239 0.848746 0.888172 0.868012 0.967849
5400 0.024000 0.139131 0.837507 0.913333 0.873778 0.970591
5700 0.018400 0.157223 0.899754 0.864731 0.881895 0.970210
6000 0.023500 0.137022 0.883018 0.873333 0.878149 0.973243
6300 0.009300 0.181448 0.840490 0.900860 0.869628 0.968290
6600 0.019200 0.173125 0.821316 0.896559 0.857290 0.966736
6900 0.016100 0.143160 0.789938 0.904946 0.843540 0.968245
7200 0.017000 0.145755 0.823274 0.897634 0.858848 0.969037
7500 0.012100 0.159342 0.825694 0.883226 0.853491 0.967468
7800 0.013800 0.194886 0.861237 0.859570 0.860403 0.964771
8100 0.008000 0.140271 0.829914 0.896129 0.861752 0.971567
8400 0.010300 0.143318 0.826844 0.908817 0.865895 0.973578
8700 0.015000 0.143392 0.847336 0.889247 0.867786 0.973365
9000 0.006000 0.143512 0.847795 0.905591 0.875741 0.972892
9300 0.011800 0.138747 0.827133 0.894194 0.859357 0.971673
9600 0.008500 0.159490 0.837030 0.909032 0.871546 0.970028
9900 0.010700 0.159249 0.846692 0.910968 0.877655 0.970546
10200 0.008100 0.170069 0.848288 0.900645 0.873683 0.969113
10500 0.004800 0.183795 0.860317 0.899355 0.879403 0.969570
10800 0.010700 0.157024 0.837838 0.906667 0.870894 0.971094
11100 0.003800 0.164286 0.845312 0.880215 0.862410 0.970744
11400 0.009700 0.204025 0.884294 0.887527 0.885907 0.968854
11700 0.008900 0.162819 0.829415 0.887742 0.857588 0.970530
12000 0.006400 0.164296 0.852666 0.901075 0.876202 0.971414
12300 0.007100 0.143367 0.852959 0.895699 0.873807 0.973669
12600 0.015800 0.153383 0.859224 0.900430 0.879345 0.972679
12900 0.006600 0.173447 0.869954 0.899140 0.884306 0.970927
13200 0.006800 0.163234 0.856849 0.897204 0.876563 0.971795
13500 0.003200 0.167164 0.850867 0.907957 0.878485 0.971231
13800 0.003600 0.148950 0.867801 0.910538 0.888656 0.976961
14100 0.003500 0.155691 0.847621 0.907957 0.876752 0.974127
14400 0.003300 0.157672 0.846553 0.911183 0.877680 0.974584
14700 0.002500 0.169965 0.847804 0.917634 0.881338 0.973045
15000 0.003400 0.177099 0.842199 0.912473 0.875929 0.971155
15300 0.006000 0.164151 0.848928 0.911183 0.878954 0.973258
15600 0.002400 0.174305 0.847437 0.906667 0.876052 0.971765
15900 0.004100 0.174561 0.852929 0.907957 0.879583 0.972907
16200 0.002600 0.172626 0.843263 0.907097 0.874016 0.972100
16500 0.002100 0.185302 0.841108 0.907312 0.872957 0.970485
16800 0.002900 0.175638 0.840557 0.909247 0.873554 0.971704
17100 0.001600 0.178750 0.857056 0.906452 0.881062 0.971765
17400 0.003900 0.188910 0.853619 0.907957 0.879950 0.970835
17700 0.002700 0.180822 0.864699 0.907097 0.885390 0.972283
18000 0.001300 0.179974 0.868150 0.906237 0.886785 0.973060
18300 0.000800 0.188032 0.881022 0.904516 0.892615 0.972572
18600 0.002700 0.183266 0.868601 0.901290 0.884644 0.972298
18900 0.001600 0.180301 0.862041 0.903011 0.882050 0.972344
19200 0.002300 0.183432 0.855370 0.904301 0.879155 0.971109
19500 0.001800 0.183381 0.854501 0.904301 0.878696 0.971186
📄 许可证
文档未提及相关许可证信息。
Indonesian Roberta Base Posp Tagger
MIT
这是一个基于印尼语RoBERTa模型微调的词性标注模型,在indonlu数据集上训练,用于印尼语文本的词性标注任务。
序列标注
Transformers 其他

I
w11wo
2.2M
7
Bert Base NER
MIT
基于BERT微调的命名实体识别模型,可识别四类实体:地点(LOC)、组织机构(ORG)、人名(PER)和杂项(MISC)
序列标注 英语
B
dslim
1.8M
592
Deid Roberta I2b2
MIT
该模型是基于RoBERTa微调的序列标注模型,用于识别和移除医疗记录中的受保护健康信息(PHI/PII)。
序列标注
Transformers 支持多种语言

D
obi
1.1M
33
Ner English Fast
Flair自带的英文快速4类命名实体识别模型,基于Flair嵌入和LSTM-CRF架构,在CoNLL-03数据集上达到92.92的F1分数。
序列标注
PyTorch 英语
N
flair
978.01k
24
French Camembert Postag Model
基于Camembert-base的法语词性标注模型,使用free-french-treebank数据集训练
序列标注
Transformers 法语

F
gilf
950.03k
9
Xlm Roberta Large Ner Spanish
基于XLM-Roberta-large架构微调的西班牙语命名实体识别模型,在CoNLL-2002数据集上表现优异。
序列标注
Transformers 西班牙语

X
MMG
767.35k
29
Nusabert Ner V1.3
MIT
基于NusaBert-v1.3在印尼语NER任务上微调的命名实体识别模型
序列标注
Transformers 其他

N
cahya
759.09k
3
Ner English Large
Flair框架内置的英文4类大型NER模型,基于文档级XLM-R嵌入和FLERT技术,在CoNLL-03数据集上F1分数达94.36。
序列标注
PyTorch 英语
N
flair
749.04k
44
Punctuate All
MIT
基于xlm-roberta-base微调的多语言标点符号预测模型,支持12种欧洲语言的标点符号自动补全
序列标注
Transformers

P
kredor
728.70k
20
Xlm Roberta Ner Japanese
MIT
基于xlm-roberta-base微调的日语命名实体识别模型
序列标注
Transformers 支持多种语言

X
tsmatz
630.71k
25
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98