🚀 生物医学命名实体识别模型
这是一个英文命名实体识别模型,可从给定文本语料(如病例报告)中识别生物医学实体(共107种实体),为生物医学领域的信息提取提供了有力支持。
🚀 快速开始
本模型可以通过从Hugging Face加载推理API,或者使用transformers
库提供的pipeline
对象这两种方式使用。
✨ 主要特性
- 实体识别能力:能够识别107种生物医学实体,适用于病例报告等文本语料。
- 模型基础:基于
distilbert-base-uncased
构建。
- 训练数据集:使用Maccrobat数据集进行训练,数据集链接:https://figshare.com/articles/dataset/MACCROBAT2018/9764942 。
- 碳排放:训练过程中的碳排放为0.0279399890043426千克。
- 训练时间:训练耗时30.16527分钟。
- 使用的GPU:1 x GeForce RTX 3060 Laptop GPU。
💻 使用示例
基础用法
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("d4data/biomedical-ner-all")
model = AutoModelForTokenClassification.from_pretrained("d4data/biomedical-ner-all")
pipe = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
pipe("""The patient reported no recurrence of palpitations at follow-up 6 months after the ablation.""")
📚 详细文档
查看本模型及相应Python库的讲解教程视频:https://youtu.be/xpiDPdBpS18
📄 许可证
本模型采用Apache-2.0许可证。
👨🔬 作者信息
本模型是Deepak John Reji和Shaina Raza开展的“生物医学领域的人工智能”研究课题的一部分。如果您使用了本项目的代码、模型或数据集,请在以下仓库点星支持:
https://github.com/dreji18/Bio-Epidemiology-NER
💗 支持作者
如果您想支持作者,可以点击下面的按钮请作者喝咖啡:

测试样例
以下是一些测试用的文本样例:
CASE: A 28-year-old previously healthy man presented with a 6-week history of palpitations.
The symptoms occurred during rest, 2–3 times per week, lasted up to 30 minutes at a time and were associated with dyspnea.
Except for a grade 2/6 holosystolic tricuspid regurgitation murmur (best heard at the left sternal border with inspiratory accentuation), physical examination yielded unremarkable findings.
A 63-year-old woman with no known cardiac history presented with a sudden onset of dyspnea requiring intubation and ventilatory support out of hospital.
She denied preceding symptoms of chest discomfort, palpitations, syncope or infection.
The patient was afebrile and normotensive, with a sinus tachycardia of 140 beats/min.
A 48 year-old female presented with vaginal bleeding and abnormal Pap smears.
Upon diagnosis of invasive non-keratinizing SCC of the cervix, she underwent a radical hysterectomy with salpingo-oophorectomy which demonstrated positive spread to the pelvic lymph nodes and the parametrium.
Pathological examination revealed that the tumour also extensively involved the lower uterine segment.