🚀 社会偏见命名实体识别(Social Bias NER)
本命名实体识别(NER)模型基于BERT进行微调,用于对以下内容进行多标签标记分类:
- (GEN)泛化表述
- (UNFAIR)不公平表述
- (STEREO)刻板印象表述
你可以在Hugging Face空间中试用该模型 😊。
🚀 快速开始
Transformers库的pipeline没有专门用于多标签标记分类的类,但你可以使用以下代码加载模型、运行模型并格式化输出:
import json
import torch
from transformers import BertTokenizerFast, BertForTokenClassification
import gradio as gr
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
model = BertForTokenClassification.from_pretrained('ethical-spectacle/social-bias-ner')
model.eval()
model.to('cuda' if torch.cuda.is_available() else 'cpu')
id2label = {
0: 'O',
1: 'B-STEREO',
2: 'I-STEREO',
3: 'B-GEN',
4: 'I-GEN',
5: 'B-UNFAIR',
6: 'I-UNFAIR'
}
def predict_ner_tags(sentence):
inputs = tokenizer(sentence, return_tensors="pt", padding=True, truncation=True, max_length=128)
input_ids = inputs['input_ids'].to(model.device)
attention_mask = inputs['attention_mask'].to(model.device)
with torch.no_grad():
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
logits = outputs.logits
probabilities = torch.sigmoid(logits)
predicted_labels = (probabilities > 0.5).int()
result = []
tokens = tokenizer.convert_ids_to_tokens(input_ids[0])
for i, token in enumerate(tokens):
if token not in tokenizer.all_special_tokens:
label_indices = (predicted_labels[0][i] == 1).nonzero(as_tuple=False).squeeze(-1)
labels = [id2label[idx.item()] for idx in label_indices] if label_indices.numel() > 0 else ['O']
result.append({"token": token, "labels": labels})
return json.dumps(result, indent=4)
📚 详细文档
GUS - Net项目详情
资源
引用信息
请使用以下BibTeX格式引用本项目:
@article{powers2024gusnet,
title={{GUS-Net: Social Bias Classification in Text with Generalizations, Unfairness, and Stereotypes}},
author={Maximus Powers and Umang Mavani and Harshitha Reddy Jonala and Ansh Tiwari and Hua Wei},
journal={arXiv preprint arXiv:2410.08388},
year={2024},
url={https://arxiv.org/abs/2410.08388}
}
欢迎关注我们的研究团队Ethical Spectacle 😊。
📄 许可证
本项目采用MIT许可证。
📦 模型信息
属性 |
详情 |
库名称 |
transformers |
任务类型 |
标记分类 |
标签 |
Social Bias |
评估指标 |
F1: 0.7864;Recall: 0.7617 |
基础模型 |
bert-base-uncased |
二氧化碳排放量 |
排放量:8;训练类型:微调;地理位置:Phoenix, AZ;使用硬件:T4 |