🚀 CAMeLBERT - CA词性标注埃及语模型
CAMeLBERT - CA词性标注埃及语模型 是一个埃及阿拉伯语词性标注模型,它通过对 [CAMeLBERT - CA](https://huggingface.co/CAMeL - Lab/bert - base - arabic - camelbert - ca/) 模型进行微调而构建。该模型可用于埃及阿拉伯语的词性标注任务,为相关自然语言处理工作提供支持。
🚀 快速开始
你可以将CAMeLBERT - CA词性标注埃及语模型作为transformers管道的一部分来使用。该模型很快也将在 [CAMeL Tools](https://github.com/CAMeL - Lab/camel_tools) 中可用。
✨ 主要特性
- 基于预训练的CAMeLBERT - CA模型进行微调,适用于埃及阿拉伯语的词性标注。
- 微调过程使用了ARZTB数据集,相关的微调程序和超参数可在论文中找到。
📦 安装指南
要下载我们的模型,你需要 transformers>=3.5.0
。否则,你可以手动下载模型。
💻 使用示例
基础用法
>>> from transformers import pipeline
>>> pos = pipeline('token - classification', model='CAMeL - Lab/bert - base - arabic - camelbert - ca - pos - egy')
>>> text = 'عامل ايه ؟'
>>> pos(text)
[{'entity': 'adj', 'score': 0.9990943, 'index': 1, 'word': 'عامل', 'start': 0, 'end': 4}, {'entity': 'pron_interrog', 'score': 0.99863535, 'index': 2, 'word': 'ايه', 'start': 5, 'end': 8}, {'entity': 'punc', 'score': 0.99990875, 'index': 3, 'word': '؟', 'start': 9, 'end': 10}]
注意事项
⚠️ 重要提示
要下载我们的模型,你需要 transformers>=3.5.0
。否则,你可以手动下载模型。
📚 详细文档
模型描述
CAMeLBERT - CA词性标注埃及语模型 是一个埃及阿拉伯语词性标注模型,它通过对 [CAMeLBERT - CA](https://huggingface.co/CAMeL - Lab/bert - base - arabic - camelbert - ca/) 模型进行微调而构建。在微调过程中,我们使用了ARZTB数据集。我们的微调程序和所使用的超参数可以在我们的论文 "The Interplay of Variant, Size, and Task Type in Arabic Pre - trained Language Models." 中找到。我们的微调代码可以在 [这里](https://github.com/CAMeL - Lab/CAMeLBERT) 找到。
预期用途
你可以将CAMeLBERT - CA词性标注埃及语模型作为transformers管道的一部分来使用。该模型很快也将在 [CAMeL Tools](https://github.com/CAMeL - Lab/camel_tools) 中可用。
📄 许可证
本项目采用Apache - 2.0许可证。
📚 引用
@inproceedings{inoue-etal-2021-interplay,
title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models",
author = "Inoue, Go and
Alhafni, Bashar and
Baimukan, Nurpeiis and
Bouamor, Houda and
Habash, Nizar",
booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop",
month = apr,
year = "2021",
address = "Kyiv, Ukraine (Online)",
publisher = "Association for Computational Linguistics",
abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.",
}