🚀 CAMeLBERT-DA命名实体识别模型
CAMeLBERT-DA命名实体识别模型 是一个命名实体识别(NER)模型,它通过微调 CAMeLBERT方言阿拉伯语(DA) 模型构建而成。在微调过程中,我们使用了 ANERcorp 数据集。我们的微调过程和所使用的超参数可以在我们的论文 "阿拉伯语预训练语言模型中变体、规模和任务类型的相互作用" 中找到。我们的微调代码可以在 这里 找到。
✨ 主要特性
🚀 快速开始
你可以直接将CAMeLBERT-DA命名实体识别模型作为我们 CAMeL Tools 命名实体识别组件的一部分使用(推荐),也可以将其作为transformers管道的一部分使用。
💻 使用示例
基础用法
使用 CAMeL Tools 命名实体识别组件:
>>> from camel_tools.ner import NERecognizer
>>> from camel_tools.tokenizers.word import simple_word_tokenize
>>> ner = NERecognizer('CAMeL-Lab/bert-base-arabic-camelbert-da-ner')
>>> sentence = simple_word_tokenize('إمارة أبوظبي هي إحدى إمارات دولة الإمارات العربية المتحدة السبع')
>>> ner.predict_sentence(sentence)
>>> ['O', 'B-LOC', 'O', 'O', 'O', 'O', 'B-LOC', 'I-LOC', 'I-LOC', 'O']
高级用法
直接使用transformers管道:
>>> from transformers import pipeline
>>> ner = pipeline('ner', model='CAMeL-Lab/bert-base-arabic-camelbert-da-ner')
>>> ner("إمارة أبوظبي هي إحدى إمارات دولة الإمارات العربية المتحدة السبع")
[{'word': 'أبوظبي',
'score': 0.9895730018615723,
'entity': 'B-LOC',
'index': 2,
'start': 6,
'end': 12},
{'word': 'الإمارات',
'score': 0.8156259655952454,
'entity': 'B-LOC',
'index': 8,
'start': 33,
'end': 41},
{'word': 'العربية',
'score': 0.890906810760498,
'entity': 'I-LOC',
'index': 9,
'start': 42,
'end': 49},
{'word': 'المتحدة',
'score': 0.8169114589691162,
'entity': 'I-LOC',
'index': 10,
'start': 50,
'end': 57}]
⚠️ 重要提示
要下载我们的模型,你需要 transformers>=3.5.0
。否则,你可以手动下载模型。
📚 详细文档
引用
@inproceedings{inoue-etal-2021-interplay,
title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models",
author = "Inoue, Go and
Alhafni, Bashar and
Baimukan, Nurpeiis and
Bouamor, Houda and
Habash, Nizar",
booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop",
month = apr,
year = "2021",
address = "Kyiv, Ukraine (Online)",
publisher = "Association for Computational Linguistics",
abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a da of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.",
}
📄 许可证
本项目采用Apache 2.0许可证。