Cogvlm Chat Hf
CogVLM是一个强大的开源视觉语言模型,在多个跨模态基准测试中取得领先性能
下载量 4,816
发布时间 : 11/16/2023
模型简介
CogVLM是一个视觉语言模型(VLM),结合了视觉和语言处理能力,适用于多模态任务
模型特点
多模态融合
结合视觉和语言处理能力,实现跨模态理解
高性能
在10个经典跨模态基准测试中取得领先性能
视觉专家模块
独特的视觉专家模块增强视觉理解能力
模型能力
图像描述生成
视觉问答
跨模态理解
多模态对话
使用案例
图像理解
图像描述生成
为图像生成准确的自然语言描述
在Flicker30k字幕生成任务中表现优异
视觉问答
基于图像的问答
回答关于图像内容的自然语言问题
在VQAv2、OKVQA等任务中位列第二
🚀 CogVLM
CogVLM 是一个强大的开源视觉语言模型(VLM)。CogVLM - 17B 拥有 100 亿视觉参数和 70 亿语言参数,在 10 个经典跨模态基准测试上取得了 SOTA 性能,包括 NoCaps、Flicker30k captioning、RefCOCO、RefCOCO+、RefCOCOg、Visual7W、GQA、ScienceQA、VizWiz VQA 和 TDIUC,而在 VQAv2、OKVQA、TextVQA、COCO captioning 等方面则排名第二,超越或与 PaLI - X 55B 持平。您可以通过线上 demo 体验 CogVLM 多模态对话。

以上权重对学术研究完全开放,在填写问卷进行登记后亦允许免费商业使用。
🚀 快速开始
硬件需求
需要近 40GB GPU 显存用于模型推理。如果没有一整块 GPU 显存超过 40GB,则需要使用 accelerate
将模型切分到多个有较小显存的 GPU 设备上。
安装依赖
pip install torch==2.1.0 transformers==4.35.0 accelerate==0.24.1 sentencepiece==0.1.99 einops==0.7.0 xformers==0.0.22.post7 triton==2.1.0
代码示例
基础用法
import torch
import requests
from PIL import Image
from transformers import AutoModelForCausalLM, LlamaTokenizer
tokenizer = LlamaTokenizer.from_pretrained('lmsys/vicuna-7b-v1.5')
model = AutoModelForCausalLM.from_pretrained(
'THUDM/cogvlm-chat-hf',
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True
).to('cuda').eval()
# chat example
query = 'Describe this image'
image = Image.open(requests.get('https://github.com/THUDM/CogVLM/blob/main/examples/1.png?raw=true', stream=True).raw).convert('RGB')
inputs = model.build_conversation_input_ids(tokenizer, query=query, history=[], images=[image]) # chat mode
inputs = {
'input_ids': inputs['input_ids'].unsqueeze(0).to('cuda'),
'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to('cuda'),
'attention_mask': inputs['attention_mask'].unsqueeze(0).to('cuda'),
'images': [[inputs['images'][0].to('cuda').to(torch.bfloat16)]],
}
gen_kwargs = {"max_length": 2048, "do_sample": False}
with torch.no_grad():
outputs = model.generate(**inputs, **gen_kwargs)
outputs = outputs[:, inputs['input_ids'].shape[1]:]
print(tokenizer.decode(outputs[0]))
# This image captures a moment from a basketball game. Two players are prominently featured: one wearing a yellow jersey with the number
# 24 and the word 'Lakers' written on it, and the other wearing a navy blue jersey with the word 'Washington' and the number 34. The player
# in yellow is holding a basketball and appears to be dribbling it, while the player in navy blue is reaching out with his arm, possibly
# trying to block or defend. The background shows a filled stadium with spectators, indicating that this is a professional game.</s>
# vqa example
query = 'How many houses are there in this cartoon?'
image = Image.open(requests.get('https://github.com/THUDM/CogVLM/blob/main/examples/3.jpg?raw=true', stream=True).raw).convert('RGB')
inputs = model.build_conversation_input_ids(tokenizer, query=query, history=[], images=[image], template_version='vqa') # vqa mode
inputs = {
'input_ids': inputs['input_ids'].unsqueeze(0).to('cuda'),
'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to('cuda'),
'attention_mask': inputs['attention_mask'].unsqueeze(0).to('cuda'),
'images': [[inputs['images'][0].to('cuda').to(torch.bfloat16)]],
}
gen_kwargs = {"max_length": 2048, "do_sample": False}
with torch.no_grad():
outputs = model.generate(**inputs, **gen_kwargs)
outputs = outputs[:, inputs['input_ids'].shape[1]:]
print(tokenizer.decode(outputs[0]))
# 4</s>
高级用法
当单卡显存不足时,可以将模型切分到多个小显存 GPU 上。以下是个当你有两张 24GB 的 GPU,16GB CPU 内存的例子。你可以将 infer_auto_device_map
的参数改成你的配置。注意这里将 GPU 显存少写了一点,这是为推理时中间状态预留出一部分显存。
import torch
import requests
from PIL import Image
from transformers import AutoModelForCausalLM, LlamaTokenizer
from accelerate import init_empty_weights, infer_auto_device_map, load_checkpoint_and_dispatch
tokenizer = LlamaTokenizer.from_pretrained('lmsys/vicuna-7b-v1.5')
with init_empty_weights():
model = AutoModelForCausalLM.from_pretrained(
'THUDM/cogvlm-chat-hf',
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True,
)
device_map = infer_auto_device_map(model, max_memory={0:'20GiB',1:'20GiB','cpu':'16GiB'}, no_split_module_classes=['CogVLMDecoderLayer', 'TransformerLayer'])
model = load_checkpoint_and_dispatch(
model,
'local/path/to/hf/version/chat/model', # typical, '~/.cache/huggingface/hub/models--THUDM--cogvlm-chat-hf/snapshots/balabala'
device_map=device_map,
)
model = model.eval()
# check device for weights if u want to
for n, p in model.named_parameters():
print(f"{n}: {p.device}")
# chat example
query = 'Describe this image'
image = Image.open(requests.get('https://github.com/THUDM/CogVLM/blob/main/examples/1.png?raw=true', stream=True).raw).convert('RGB')
inputs = model.build_conversation_input_ids(tokenizer, query=query, history=[], images=[image]) # chat mode
inputs = {
'input_ids': inputs['input_ids'].unsqueeze(0).to('cuda'),
'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to('cuda'),
'attention_mask': inputs['attention_mask'].unsqueeze(0).to('cuda'),
'images': [[inputs['images'][0].to('cuda').to(torch.bfloat16)]],
}
gen_kwargs = {"max_length": 2048, "do_sample": False}
with torch.no_grad():
outputs = model.generate(**inputs, **gen_kwargs)
outputs = outputs[:, inputs['input_ids'].shape[1]:]
print(tokenizer.decode(outputs[0]))
🔧 技术细节
CogVLM 模型包括四个基本组件:视觉变换器(ViT)编码器、MLP 适配器、预训练的大型语言模型(GPT)和一个视觉专家模块。更多细节请参见Paper。

📄 许可证
此存储库中的代码是根据 Apache - 2.0 许可 开放源码,而使用 CogVLM 模型权重必须遵循 模型许可。
📖 引用
如果您觉得我们的工作有帮助,请考虑引用以下论文:
@article{wang2023cogvlm,
title={CogVLM: Visual Expert for Pretrained Language Models},
author={Weihan Wang and Qingsong Lv and Wenmeng Yu and Wenyi Hong and Ji Qi and Yan Wang and Junhui Ji and Zhuoyi Yang and Lei Zhao and Xixuan Song and Jiazheng Xu and Bin Xu and Juanzi Li and Yuxiao Dong and Ming Ding and Jie Tang},
year={2023},
eprint={2311.03079},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
Clip Vit Large Patch14 336
基于Vision Transformer架构的大规模视觉语言预训练模型,支持图像与文本的跨模态理解
文本生成图像
Transformers

C
openai
5.9M
241
Fashion Clip
MIT
FashionCLIP是基于CLIP开发的视觉语言模型,专门针对时尚领域进行微调,能够生成通用产品表征。
文本生成图像
Transformers 英语

F
patrickjohncyh
3.8M
222
Gemma 3 1b It
Gemma 3是Google推出的轻量级先进开放模型系列,基于与Gemini模型相同的研究和技术构建。该模型是多模态模型,能够处理文本和图像输入并生成文本输出。
文本生成图像
Transformers

G
google
2.1M
347
Blip Vqa Base
Bsd-3-clause
BLIP是一个统一的视觉语言预训练框架,擅长视觉问答任务,通过语言-图像联合训练实现多模态理解与生成能力
文本生成图像
Transformers

B
Salesforce
1.9M
154
CLIP ViT H 14 Laion2b S32b B79k
MIT
基于OpenCLIP框架在LAION-2B英文数据集上训练的视觉-语言模型,支持零样本图像分类和跨模态检索任务
文本生成图像
Safetensors
C
laion
1.8M
368
CLIP ViT B 32 Laion2b S34b B79k
MIT
基于OpenCLIP框架在LAION-2B英语子集上训练的视觉-语言模型,支持零样本图像分类和跨模态检索
文本生成图像
Safetensors
C
laion
1.1M
112
Pickscore V1
PickScore v1 是一个针对文本生成图像的评分函数,可用于预测人类偏好、评估模型性能和图像排序等任务。
文本生成图像
Transformers

P
yuvalkirstain
1.1M
44
Owlv2 Base Patch16 Ensemble
Apache-2.0
OWLv2是一种零样本文本条件目标检测模型,可通过文本查询在图像中定位对象。
文本生成图像
Transformers

O
google
932.80k
99
Llama 3.2 11B Vision Instruct
Llama 3.2 是 Meta 发布的多语言多模态大型语言模型,支持图像文本到文本的转换任务,具备强大的跨模态理解能力。
文本生成图像
Transformers 支持多种语言

L
meta-llama
784.19k
1,424
Owlvit Base Patch32
Apache-2.0
OWL-ViT是一个零样本文本条件目标检测模型,可以通过文本查询搜索图像中的对象,无需特定类别的训练数据。
文本生成图像
Transformers

O
google
764.95k
129
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98