🚀 opus-mt-tc-big-fr-en
这是一个用于从法语(fr)翻译成英语(en)的神经机器翻译模型。它是OPUS - MT项目的一部分,致力于让神经机器翻译模型在全球多种语言中广泛可用且易于获取。
🚀 快速开始
基础用法
from transformers import MarianMTModel, MarianTokenizer
src_text = [
"J'ai adoré l'Angleterre.",
"C'était la seule chose à faire."
]
model_name = "pytorch-models/opus-mt-tc-big-fr-en"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
for t in translated:
print( tokenizer.decode(t, skip_special_tokens=True) )
高级用法
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-fr-en")
print(pipe("J'ai adoré l'Angleterre."))
✨ 主要特性
📚 详细文档
模型信息
基准测试
语言对 |
测试集 |
chr - F |
BLEU |
句子数 |
单词数 |
fra - eng |
tatoeba - test - v2021 - 08 - 07 |
0.73772 |
59.8 |
12681 |
101754 |
fra - eng |
flores101 - devtest |
0.69350 |
46.0 |
1012 |
24721 |
fra - eng |
multi30k_test_2016_flickr |
0.68005 |
49.7 |
1000 |
12955 |
fra - eng |
multi30k_test_2017_flickr |
0.70596 |
52.0 |
1000 |
11374 |
fra - eng |
multi30k_test_2017_mscoco |
0.69356 |
50.6 |
461 |
5231 |
fra - eng |
multi30k_test_2018_flickr |
0.65751 |
44.9 |
1071 |
14689 |
fra - eng |
newsdiscussdev2015 |
0.59008 |
34.4 |
1500 |
27759 |
fra - eng |
newsdiscusstest2015 |
0.62603 |
40.2 |
1500 |
26982 |
fra - eng |
newssyscomb2009 |
0.57488 |
31.1 |
502 |
11818 |
fra - eng |
news - test2008 |
0.54316 |
26.5 |
2051 |
49380 |
fra - eng |
newstest2009 |
0.56959 |
30.4 |
2525 |
65399 |
fra - eng |
newstest2010 |
0.59561 |
33.4 |
2489 |
61711 |
fra - eng |
newstest2011 |
0.60271 |
33.8 |
3003 |
74681 |
fra - eng |
newstest2012 |
0.59507 |
33.6 |
3003 |
72812 |
fra - eng |
newstest2013 |
0.59691 |
34.8 |
3000 |
64505 |
fra - eng |
newstest2014 |
0.64533 |
39.4 |
3003 |
70708 |
fra - eng |
tico19 - test |
0.63326 |
41.3 |
2100 |
56323 |
基准测试文件
引用信息
@inproceedings{tiedemann-thottingal-2020-opus,
title = "{OPUS}-{MT} {--} Building open translation services for the World",
author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
month = nov,
year = "2020",
address = "Lisboa, Portugal",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2020.eamt-1.61",
pages = "479--480",
}
@inproceedings{tiedemann-2020-tatoeba,
title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
author = {Tiedemann, J{\"o}rg},
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wmt-1.139",
pages = "1174--1182",
}
模型转换信息
- transformers版本: 4.16.2
- OPUS - MT git哈希值: 3405783
- 转换时间: Wed Apr 13 19:02:28 EEST 2022
- 转换机器: LM0 - 400 - 22516.local
致谢
这项工作得到了以下项目的支持:
我们也感谢 CSC -- 芬兰科学信息技术中心 提供的慷慨计算资源和IT基础设施。
出版物
OPUS - MT – Building open translation services for the World 和 The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT(如果使用此模型,请引用)。
📄 许可证
本模型采用CC - BY - 4.0许可证。