🚀 Wav2Vec2-Base 用于说话人识别
本模型用于说话人识别任务,基于预训练的 wav2vec2-base 模型,能对语音进行分类以识别说话人身份,在相关数据集上有较好的表现。
🚀 快速开始
你可以通过以下两种方式使用该模型:
方式一:使用音频分类管道
from datasets import load_dataset
from transformers import pipeline
dataset = load_dataset("anton-l/superb_demo", "si", split="test")
classifier = pipeline("audio-classification", model="superb/wav2vec2-base-superb-sid")
labels = classifier(dataset[0]["file"], top_k=5)
方式二:直接使用模型
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2FeatureExtractor
def map_to_array(example):
speech, _ = librosa.load(example["file"], sr=16000, mono=True)
example["speech"] = speech
return example
dataset = load_dataset("anton-l/superb_demo", "si", split="test")
dataset = dataset.map(map_to_array)
model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-sid")
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-sid")
inputs = feature_extractor(dataset[:2]["speech"], sampling_rate=16000, padding=True, return_tensors="pt")
logits = model(**inputs).logits
predicted_ids = torch.argmax(logits, dim=-1)
labels = [model.config.id2label[_id] for _id in predicted_ids.tolist()]
✨ 主要特性
📦 安装指南
文档未提及安装步骤,可参考相关库(如 datasets
、transformers
、torch
、librosa
等)的官方安装说明进行安装。
💻 使用示例
基础用法
你可以使用音频分类管道来使用该模型:
from datasets import load_dataset
from transformers import pipeline
dataset = load_dataset("anton-l/superb_demo", "si", split="test")
classifier = pipeline("audio-classification", model="superb/wav2vec2-base-superb-sid")
labels = classifier(dataset[0]["file"], top_k=5)
高级用法
直接使用模型进行推理:
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2FeatureExtractor
def map_to_array(example):
speech, _ = librosa.load(example["file"], sr=16000, mono=True)
example["speech"] = speech
return example
dataset = load_dataset("anton-l/superb_demo", "si", split="test")
dataset = dataset.map(map_to_array)
model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-sid")
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-sid")
inputs = feature_extractor(dataset[:2]["speech"], sampling_rate=16000, padding=True, return_tensors="pt")
logits = model(**inputs).logits
predicted_ids = torch.argmax(logits, dim=-1)
labels = [model.config.id2label[_id] for _id in predicted_ids.tolist()]
📚 详细文档
🔧 技术细节
文档未提及详细的技术实现细节。
📄 许可证
本模型使用的许可证为 Apache-2.0。
BibTeX 引用和引用信息
@article{yang2021superb,
title={SUPERB: Speech processing Universal PERformance Benchmark},
author={Yang, Shu-wen and Chi, Po-Han and Chuang, Yung-Sung and Lai, Cheng-I Jeff and Lakhotia, Kushal and Lin, Yist Y and Liu, Andy T and Shi, Jiatong and Chang, Xuankai and Lin, Guan-Ting and others},
journal={arXiv preprint arXiv:2105.01051},
year={2021}
}
📊 评估结果
评估指标为准确率。
|
s3prl |
transformers |
测试集 |
0.7518 |
0.7518 |