🚀 结果模型
本模型是基于 facebook/wav2vec2-large-xlsr-53 在 None 数据集上进行微调的版本。它在评估集上取得了以下结果:
🚀 快速开始
此部分文档未提供快速开始的相关内容,若需快速使用该模型,可参考后续训练和评估数据、训练过程等部分内容进行操作。
✨ 主要特性
- 该模型可处理乌尔都语音频,并将其分类到以下类别中:
📦 安装指南
文档未提及安装相关内容,若使用该模型,可根据其依赖的框架版本(如 Transformers 4.18.0、Pytorch 1.11.0 等)进行对应安装。
📚 详细文档
训练和评估数据
数据集可在以下链接获取:
https://www.kaggle.com/datasets/kingabzpro/urdu-emotion-dataset
训练过程
训练代码可在以下链接获取:
https://www.kaggle.com/code/chtalhaanwar/urdu-emotions-hf
训练超参数
训练过程中使用了以下超参数:
- 学习率:5e - 05
- 训练批次大小:32
- 评估批次大小:32
- 随机种子:42
- 优化器:Adam(β1 = 0.9,β2 = 0.999,ε = 1e - 08)
- 学习率调度器类型:线性
- 训练轮数:50
- 混合精度训练:Native AMP
训练结果
训练损失 |
轮数 |
步数 |
验证损失 |
准确率 |
1.3838 |
1.0 |
10 |
1.3907 |
0.225 |
1.3732 |
2.0 |
20 |
1.3872 |
0.2125 |
1.3354 |
3.0 |
30 |
1.3116 |
0.6625 |
1.2689 |
4.0 |
40 |
1.1820 |
0.6375 |
1.1179 |
5.0 |
50 |
1.0075 |
0.7 |
0.9962 |
6.0 |
60 |
0.8707 |
0.7125 |
0.8842 |
7.0 |
70 |
0.7485 |
0.7625 |
0.786 |
8.0 |
80 |
0.6326 |
0.8 |
0.6757 |
9.0 |
90 |
0.5995 |
0.8 |
0.6104 |
10.0 |
100 |
0.4835 |
0.825 |
0.5821 |
11.0 |
110 |
0.3886 |
0.9 |
0.4721 |
12.0 |
120 |
0.3935 |
0.8625 |
0.3976 |
13.0 |
130 |
0.3020 |
0.925 |
0.4483 |
14.0 |
140 |
0.3171 |
0.9 |
0.2665 |
15.0 |
150 |
0.3016 |
0.9125 |
0.2119 |
16.0 |
160 |
0.2722 |
0.925 |
0.3376 |
17.0 |
170 |
0.3163 |
0.8875 |
0.1518 |
18.0 |
180 |
0.2681 |
0.9125 |
0.1559 |
19.0 |
190 |
0.3074 |
0.925 |
0.1031 |
20.0 |
200 |
0.3526 |
0.8875 |
0.1557 |
21.0 |
210 |
0.2254 |
0.9375 |
0.0846 |
22.0 |
220 |
0.2410 |
0.9375 |
0.0733 |
23.0 |
230 |
0.2369 |
0.925 |
0.0964 |
24.0 |
240 |
0.2273 |
0.9375 |
0.0574 |
25.0 |
250 |
0.2066 |
0.95 |
0.1113 |
26.0 |
260 |
0.2941 |
0.9125 |
0.1313 |
27.0 |
270 |
0.2715 |
0.925 |
0.0851 |
28.0 |
280 |
0.1725 |
0.9625 |
0.0402 |
29.0 |
290 |
0.2221 |
0.95 |
0.1075 |
30.0 |
300 |
0.2199 |
0.9625 |
0.0418 |
31.0 |
310 |
0.1699 |
0.95 |
0.1869 |
32.0 |
320 |
0.2287 |
0.9625 |
0.0637 |
33.0 |
330 |
0.3230 |
0.9125 |
0.0483 |
34.0 |
340 |
0.1602 |
0.975 |
0.0891 |
35.0 |
350 |
0.1615 |
0.975 |
0.0359 |
36.0 |
360 |
0.1571 |
0.975 |
0.1006 |
37.0 |
370 |
0.1809 |
0.9625 |
0.0417 |
38.0 |
380 |
0.1923 |
0.9625 |
0.0346 |
39.0 |
390 |
0.2035 |
0.9625 |
0.0417 |
40.0 |
400 |
0.1737 |
0.9625 |
0.0396 |
41.0 |
410 |
0.1833 |
0.9625 |
0.0202 |
42.0 |
420 |
0.1946 |
0.9625 |
0.0137 |
43.0 |
430 |
0.1785 |
0.9625 |
0.0214 |
44.0 |
440 |
0.1841 |
0.9625 |
0.0304 |
45.0 |
450 |
0.1690 |
0.9625 |
0.0199 |
46.0 |
460 |
0.1646 |
0.975 |
0.0122 |
47.0 |
470 |
0.1622 |
0.975 |
0.0324 |
48.0 |
480 |
0.1615 |
0.975 |
0.0269 |
49.0 |
490 |
0.1625 |
0.975 |
0.0245 |
50.0 |
500 |
0.1638 |
0.975 |
框架版本
- Transformers 4.18.0
- Pytorch 1.11.0
- Datasets 2.1.0
- Tokenizers 0.12.1
🔧 技术细节
文档未提供更深入的技术细节内容,若需了解模型的具体技术实现,可参考训练代码链接中的代码进行分析。
📄 许可证
本模型使用的许可证为 Apache - 2.0。