🚀 音频情感支配力识别模型
本模型用于音频情感支配力识别,基于MSP - Podcast数据集训练,可预测音频中情感的支配力程度,预测范围约为0到1,为Odyssey 2024情感识别竞赛提供了基线模型。
🚀 快速开始
本模型主要用于音频情感支配力的识别,通过输入音频文件,可预测其情感支配力程度。以下是使用示例:
from transformers import AutoModelForAudioClassification
import librosa, torch
model = AutoModelForAudioClassification.from_pretrained("3loi/SER-Odyssey-Baseline-WavLM-Dominance", trust_remote_code=True)
mean = model.config.mean
std = model.config.std
audio_path = "/path/to/audio.wav"
raw_wav, _ = librosa.load(audio_path, sr=model.config.sampling_rate)
norm_wav = (raw_wav - mean) / (std+0.000001)
mask = torch.ones(1, len(norm_wav))
wavs = torch.tensor(norm_wav).unsqueeze(0)
with torch.no_grad():
pred = model(wavs, mask)
print(model.config.id2label)
print(pred)
✨ 主要特性
- 单任务专业模型:专门用于预测音频情感的支配力程度,预测范围约为0到1。
- 基于特定数据集训练:在[MSP - Podcast](https://ecs.utdallas.edu/research/researchlabs/msp-lab/MSP - Podcast.html)数据集上进行训练,为Odyssey 2024情感识别竞赛提供基线。
📚 详细文档
模型基准测试
基于Odyssey竞赛的Test3和开发集进行CCC(一致性相关系数)评估,结果如下:
数据集 |
支配力CCC值 |
Test 3 |
0.424 |
开发集 |
0.584 |
更多详情
- [演示](https://huggingface.co/spaces/3loi/WavLM - SER - Multi - Baseline - Odyssey2024)
- [论文](https://ecs.utdallas.edu/research/researchlabs/msp - lab/publications/Goncalves_2024.pdf)
- [GitHub](https://github.com/MSP - UTD/MSP - Podcast_Challenge/tree/main)
引用信息
@InProceedings{Goncalves_2024,
author={L. Goncalves and A. N. Salman and A. {Reddy Naini} and L. Moro - Velazquez and T. Thebaud and L. {Paola Garcia} and N. Dehak and B. Sisman and C. Busso},
title={Odyssey2024 - Speech Emotion Recognition Challenge: Dataset, Baseline Framework, and Results},
booktitle={Odyssey 2024: The Speaker and Language Recognition Workshop)},
volume={To appear},
year={2024},
month={June},
address = {Quebec, Canada},
}
📄 许可证
本模型采用MIT许可证。
属性 |
详情 |
模型类型 |
单任务专业情感支配力预测模型 |
训练数据 |
MSP - Podcast数据集 |