🚀 使用Wav2Vec 2.0进行进食声音分类
本项目利用Wav2Vec 2.0模型实现进食声音的分类,能够准确识别不同食物进食时产生的声音,为音频分类领域提供了有效的解决方案。
🚀 快速开始
✨ 主要特性
- 基于Wav2Vec 2.0模型,对进食声音进行精准分类。
- 支持多种常见食物进食声音的识别。
📦 安装指南
所需依赖包
!pip install git+https://github.com/huggingface/datasets.git
!pip install git+https://github.com/huggingface/transformers.git
!pip install torchaudio
!pip install librosa
💻 使用示例
基础用法
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
from transformers import AutoConfig, Wav2Vec2FeatureExtractor
import librosa
import IPython.display as ipd
import numpy as np
import pandas as pd
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_name_or_path = "m3hrdadfi/wav2vec2-base-100k-eating-sound-collection"
config = AutoConfig.from_pretrained(model_name_or_path)
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path)
sampling_rate = feature_extractor.sampling_rate
model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path).to(device)
def speech_file_to_array_fn(path, sampling_rate):
speech_array, _sampling_rate = torchaudio.load(path)
resampler = torchaudio.transforms.Resample(_sampling_rate)
speech = resampler(speech_array).squeeze().numpy()
return speech
def predict(path, sampling_rate):
speech = speech_file_to_array_fn(path, sampling_rate)
inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
inputs = {key: inputs[key].to(device) for key in inputs}
with torch.no_grad():
logits = model(**inputs).logits
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
outputs = [{"Label": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)]
return outputs
path = "clips_rd/gummies/gummies_6_04.wav"
outputs = predict(path, sampling_rate)
[
{'Label': 'aloe', 'Score': '0.0%'},
{'Label': 'burger', 'Score': '0.0%'},
{'Label': 'cabbage', 'Score': '0.0%'},
{'Label': 'candied_fruits', 'Score': '0.0%'},
{'Label': 'carrots', 'Score': '0.0%'},
{'Label': 'chips', 'Score': '0.0%'},
{'Label': 'chocolate', 'Score': '0.0%'},
{'Label': 'drinks', 'Score': '0.0%'},
{'Label': 'fries', 'Score': '0.0%'},
{'Label': 'grapes', 'Score': '0.0%'},
{'Label': 'gummies', 'Score': '99.8%'},
{'Label': 'ice-cream', 'Score': '0.0%'},
{'Label': 'jelly', 'Score': '0.1%'},
{'Label': 'noodles', 'Score': '0.0%'},
{'Label': 'pickles', 'Score': '0.0%'},
{'Label': 'pizza', 'Score': '0.0%'},
{'Label': 'ribs', 'Score': '0.0%'},
{'Label': 'salmon', 'Score': '0.0%'},
{'Label': 'soup', 'Score': '0.0%'},
{'Label': 'wings', 'Score': '0.0%'}
]
📚 详细文档
评估结果
以下表格总结了模型整体和每个类别的得分情况。
标签 |
精确率 |
召回率 |
F1得分 |
样本数 |
aloe |
0.989 |
0.807 |
0.889 |
109 |
burger |
1.000 |
0.471 |
0.640 |
119 |
cabbage |
0.907 |
0.970 |
0.937 |
100 |
candied_fruits |
0.952 |
0.988 |
0.970 |
161 |
carrots |
0.970 |
0.992 |
0.981 |
132 |
chips |
0.993 |
0.951 |
0.972 |
144 |
chocolate |
0.828 |
0.914 |
0.869 |
58 |
drinks |
0.982 |
0.948 |
0.965 |
58 |
fries |
0.935 |
0.783 |
0.852 |
129 |
grapes |
0.965 |
0.940 |
0.952 |
116 |
gummies |
0.880 |
0.971 |
0.923 |
136 |
ice-cream |
0.953 |
0.972 |
0.962 |
145 |
jelly |
0.906 |
0.875 |
0.890 |
88 |
noodles |
0.817 |
0.817 |
0.817 |
82 |
pickles |
0.933 |
0.960 |
0.946 |
174 |
pizza |
0.704 |
0.934 |
0.803 |
122 |
ribs |
0.796 |
0.755 |
0.775 |
98 |
salmon |
0.647 |
0.970 |
0.776 |
100 |
soup |
0.941 |
0.857 |
0.897 |
56 |
wings |
0.842 |
0.792 |
0.816 |
101 |
accuracy |
0.890 |
0.890 |
0.890 |
0 |
macro avg |
0.897 |
0.883 |
0.882 |
2228 |
weighted avg |
0.903 |
0.890 |
0.888 |
2228 |
❓ 常见问题
如果您有任何问题,请从这里提交GitHub问题。