🚀 使用Wav2Vec 2.0进行希腊语(el)语音情感识别
本项目利用Wav2Vec 2.0模型实现希腊语语音的情感识别,能够准确判断语音中的情感类别,如愤怒、厌恶、恐惧等。
🚀 快速开始
🔧 环境要求
运行此项目前,你需要安装以下依赖包:
!pip install git+https://github.com/huggingface/datasets.git
!pip install git+https://github.com/huggingface/transformers.git
!pip install torchaudio
!pip install librosa
💻 使用示例
基础用法
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
from transformers import AutoConfig, Wav2Vec2FeatureExtractor
import librosa
import IPython.display as ipd
import numpy as np
import pandas as pd
高级用法
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_name_or_path = "m3hrdadfi/wav2vec2-xlsr-greek-speech-emotion-recognition"
config = AutoConfig.from_pretrained(model_name_or_path)
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path)
sampling_rate = feature_extractor.sampling_rate
model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path).to(device)
def speech_file_to_array_fn(path, sampling_rate):
speech_array, _sampling_rate = torchaudio.load(path)
resampler = torchaudio.transforms.Resample(_sampling_rate)
speech = resampler(speech_array).squeeze().numpy()
return speech
def predict(path, sampling_rate):
speech = speech_file_to_array_fn(path, sampling_rate)
inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
inputs = {key: inputs[key].to(device) for key in inputs}
with torch.no_grad():
logits = model(**inputs).logits
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)]
return outputs
path = "/path/to/disgust.wav"
outputs = predict(path, sampling_rate)
[
{'Emotion': 'anger', 'Score': '0.0%'},
{'Emotion': 'disgust', 'Score': '99.2%'},
{'Emotion': 'fear', 'Score': '0.1%'},
{'Emotion': 'happiness', 'Score': '0.3%'},
{'Emotion': 'sadness', 'Score': '0.5%'}
]
📊 评估结果
以下表格总结了模型在整体和各个类别上的得分情况:
情感类别 |
精确率 |
召回率 |
F1分数 |
准确率 |
愤怒 |
0.92 |
1.00 |
0.96 |
|
厌恶 |
0.85 |
0.96 |
0.90 |
|
恐惧 |
0.88 |
0.88 |
0.88 |
|
快乐 |
0.94 |
0.71 |
0.81 |
|
悲伤 |
0.96 |
1.00 |
0.98 |
|
|
|
|
总体 |
0.91 |
❓ 常见问题
如果你有任何疑问,可以点击此处在GitHub上提交问题。
📄 许可证
本项目采用Apache 2.0许可证。
信息表格
属性 |
详情 |
语言 |
希腊语(el) |
数据集 |
aesdd |
标签 |
音频、自动语音识别、语音、语音情感识别 |
许可证 |
apache - 2.0 |