🚀 TabPFNMix分类器
TabPFNMix分类器是一种表格基础模型,它在从随机分类器组合中采样得到的纯合成数据集上进行预训练。该模型能够有效解决表格数据分类问题,为相关研究和应用提供了强大的支持。
🚀 快速开始
安装依赖
要使用TabPFNMix分类器,需要先安装AutoGluon,可运行以下命令:
pip install autogluon
代码示例
以下是一个使用TabPFNMix分类器进行微调与推理的最小示例:
import pandas as pd
from autogluon.tabular import TabularPredictor
if __name__ == '__main__':
train_data = pd.read_csv('https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv')
subsample_size = 5000
if subsample_size is not None and subsample_size < len(train_data):
train_data = train_data.sample(n=subsample_size, random_state=0)
test_data = pd.read_csv('https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv')
tabpfnmix_default = {
"model_path_classifier": "autogluon/tabpfn-mix-1.0-classifier",
"model_path_regressor": "autogluon/tabpfn-mix-1.0-regressor",
"n_ensembles": 1,
"max_epochs": 30,
}
hyperparameters = {
"TABPFNMIX": [
tabpfnmix_default,
],
}
label = "class"
predictor = TabularPredictor(label=label)
predictor = predictor.fit(
train_data=train_data,
hyperparameters=hyperparameters,
verbosity=3,
)
predictor.leaderboard(test_data, display=True)
✨ 主要特性
TabPFNMix基于一个拥有3700万个参数的12层编码器 - 解码器Transformer架构。它采用了一种结合上下文学习的预训练策略,与TabPFN和TabForestPFN所使用的策略类似。
📚 详细文档
如果您在研究中发现TabPFNMix很有用,请考虑引用相关论文:
@article{erickson2020autogluon,
title={Autogluon-tabular: Robust and accurate automl for structured data},
author={Erickson, Nick and Mueller, Jonas and Shirkov, Alexander and Zhang, Hang and Larroy, Pedro and Li, Mu and Smola, Alexander},
journal={arXiv preprint arXiv:2003.06505},
year={2020}
}
@article{hollmann2022tabpfn,
title={Tabpfn: A transformer that solves small tabular classification problems in a second},
author={Hollmann, Noah and M{\"u}ller, Samuel and Eggensperger, Katharina and Hutter, Frank},
journal={arXiv preprint arXiv:2207.01848},
year={2022}
}
@article{breejen2024context,
title={Why In-Context Learning Transformers are Tabular Data Classifiers},
author={Breejen, Felix den and Bae, Sangmin and Cha, Stephen and Yun, Se-Young},
journal={arXiv preprint arXiv:2405.13396},
year={2024}
}
📄 许可证
本项目采用Apache - 2.0许可证。