🚀 Oryx-1.5-7B
Oryx-1.5-7B是一个基于Qwen2.5语言模型的多模态大模型,具有32K token的上下文窗口,在图像和视频理解任务上展现出了强大的性能。它能够无缝且高效地处理任意空间大小和时间长度的视觉输入。
基础信息
属性 |
详情 |
基础模型 |
Qwen/Qwen2.5-7B-Instruct |
训练数据集 |
Oryx-SFT-Data |
支持语言 |
英文、中文 |
许可证 |
apache-2.0 |
任务类型 |
视频文本到文本 |
库名称 |
oryx |
项目链接
- 代码仓库:https://github.com/Oryx-mllm/Oryx
- 项目主页:https://oryx-mllm.github.io
- 论文链接:https://arxiv.org/abs/2409.12961
🚀 快速开始
我们提供了一个简单的模型使用示例,更多详细信息请参考我们的 Github 仓库。
from oryx.model.builder import load_pretrained_model
from oryx.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token
from oryx.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX
from oryx.conversation import conv_templates, SeparatorStyle
from PIL import Image
import requests
import copy
import torch
import sys
import warnings
from decord import VideoReader, cpu
import numpy as np
def load_video(self, video_path, max_frames_num,fps=1,force_sample=False):
if max_frames_num == 0:
return np.zeros((1, 336, 336, 3))
vr = VideoReader(video_path, ctx=cpu(0),num_threads=1)
total_frame_num = len(vr)
video_time = total_frame_num / vr.get_avg_fps()
fps = round(vr.get_avg_fps()/fps)
frame_idx = [i for i in range(0, len(vr), fps)]
frame_time = [i/fps for i in frame_idx]
if len(frame_idx) > max_frames_num or force_sample:
sample_fps = max_frames_num
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, sample_fps, dtype=int)
frame_idx = uniform_sampled_frames.tolist()
frame_time = [i/vr.get_avg_fps() for i in frame_idx]
frame_time = ",".join([f"{i:.2f}s" for i in frame_time])
spare_frames = vr.get_batch(frame_idx).asnumpy()
return spare_frames,frame_time,video_time
pretrained = "THUdyh/Oryx-7B"
model_name = "oryx_qwen"
device = "cuda"
device_map = "auto"
tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, device_map=device_map)
model.eval()
video_path = ""
max_frames_num = "64"
video,frame_time,video_time = load_video(video_path, max_frames_num, 1, force_sample=True)
video = image_processor.preprocess(video, return_tensors="pt")["pixel_values"].cuda().bfloat16()
video = [video]
video_data = (video, video)
input_data = (video_data, (384, 384), "video")
conv_template = "qwen_1_5"
question = DEFAULT_IMAGE_TOKEN + "\nPlease describe this video in detail."
conv = copy.deepcopy(conv_templates[conv_template])
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt_question = conv.get_prompt()
input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)
output_ids = model.generate(
inputs=input_ids,
images=input_data[0][0],
images_highres=input_data[0][1],
modalities=video_data[2],
do_sample=False,
temperature=0,
max_new_tokens=128,
use_cache=True,
)
text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)
print(text_outputs)
✨ 主要特性
- 多模态处理:能够无缝且高效地处理任意空间大小和时间长度的视觉输入。
- 长上下文窗口:基于Qwen2.5语言模型,具有32K token的上下文窗口。
- 多语言支持:支持英文和中文两种语言。
📚 详细文档
模型表现
通用视频基准测试

长视频理解

常见图像基准测试

3D空间理解

模型架构
- 架构:预训练的 Oryx-ViT + Qwen2.5-7B
- 数据:120万张图像/视频数据的混合
- 精度:BFloat16
硬件与软件
- 硬件:64 * NVIDIA Tesla A100
- 编排工具:HuggingFace Trainer
- 代码框架:Pytorch
📄 许可证
本项目采用 apache-2.0
许可证。
📚 引用
如果您使用了本项目的代码或模型,请引用以下论文:
@article{liu2024oryx,
title={Oryx MLLM: On-Demand Spatial-Temporal Understanding at Arbitrary Resolution},
author={Liu, Zuyan and Dong, Yuhao and Liu, Ziwei and Hu, Winston and Lu, Jiwen and Rao, Yongming},
journal={arXiv preprint arXiv:2409.12961},
year={2024}
}