🚀 纳米图像字幕生成模型
这是一个基于BERT-Tiny和ViT-Tiny的图像字幕生成模型,仅40MB!它在CPU上也能快速运行,为图像添加描述信息提供了高效解决方案。
🚀 快速开始
此图像字幕生成模型能快速为图像生成描述。以下是使用该模型的步骤:
from transformers import AutoTokenizer, AutoImageProcessor, VisionEncoderDecoderModel
import requests, time
from PIL import Image
model_path = "cnmoro/nano-image-captioning"
model = VisionEncoderDecoderModel.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
image_processor = AutoImageProcessor.from_pretrained(model_path)
url = "https://upload.wikimedia.org/wikipedia/commons/thumb/4/47/New_york_times_square-terabass.jpg/800px-New_york_times_square-terabass.jpg"
image = Image.open(requests.get(url, stream=True).raw)
pixel_values = image_processor(image, return_tensors="pt").pixel_values
start = time.time()
generated_ids = model.generate(
pixel_values,
temperature=0.7,
top_p=0.8,
top_k=50,
num_beams=3
)
generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
end = time.time()
print(generated_text)
print(f"Time taken: {end - start} seconds")
💻 使用示例
基础用法
from transformers import AutoTokenizer, AutoImageProcessor, VisionEncoderDecoderModel
import requests, time
from PIL import Image
model_path = "cnmoro/nano-image-captioning"
model = VisionEncoderDecoderModel.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
image_processor = AutoImageProcessor.from_pretrained(model_path)
url = "https://upload.wikimedia.org/wikipedia/commons/thumb/4/47/New_york_times_square-terabass.jpg/800px-New_york_times_square-terabass.jpg"
image = Image.open(requests.get(url, stream=True).raw)
pixel_values = image_processor(image, return_tensors="pt").pixel_values
start = time.time()
generated_ids = model.generate(
pixel_values,
temperature=0.7,
top_p=0.8,
top_k=50,
num_beams=3
)
generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
end = time.time()
print(generated_text)
print(f"Time taken: {end - start} seconds")
高级用法
from transformers import AutoTokenizer, AutoImageProcessor, VisionEncoderDecoderModel
import requests, time
from PIL import Image
model_path = "cnmoro/nano-image-captioning"
model = VisionEncoderDecoderModel.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
image_processor = AutoImageProcessor.from_pretrained(model_path)
image_urls = [
"https://upload.wikimedia.org/wikipedia/commons/thumb/4/47/New_york_times_square-terabass.jpg/800px-New_york_times_square-terabass.jpg",
"https://example.com/another_image.jpg"
]
for url in image_urls:
image = Image.open(requests.get(url, stream=True).raw)
pixel_values = image_processor(image, return_tensors="pt").pixel_values
start = time.time()
generated_ids = model.generate(
pixel_values,
temperature=0.7,
top_p=0.8,
top_k=50,
num_beams=3
)
generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
end = time.time()
print(generated_text)
print(f"Time taken: {end - start} seconds")
📄 许可证
本项目采用Apache-2.0许可证。
📚 详细文档
属性 |
详情 |
基础模型 |
WinKawaks/vit-tiny-patch16-224、google/bert_uncased_L-2_H-128_A-2 |
任务类型 |
图像转文本 |
库名称 |
Transformers |
标签 |
ViT、BERT、视觉、字幕、字幕生成、图像 |