🚀 Poster2Plot
Poster2Plot 是一个图像描述模型,可根据电影或电视剧海报生成剧情简介。目前它生成的剧情表现尚可,但仍有提升空间。我们正在持续努力改进该模型。
🚀 快速开始
在线演示
你可以在 Hugging Face Spaces 上体验实时演示:https://huggingface.co/spaces/deepklarity/poster2plot
✨ 主要特性
该模型以 Vision Transformer (ViT) 作为图像编码器,GPT - 2 作为解码器。具体使用的模型如下:
📦 数据集
模型使用了公开可用的 IMDb 数据集进行训练。
💻 使用示例
基础用法
以下是在 PyTorch 中使用该模型的示例代码:
import torch
import re
import requests
from PIL import Image
from transformers import AutoTokenizer, AutoFeatureExtractor, VisionEncoderDecoderModel
regex_pattern = "[.]{2,}"
def post_process(text):
try:
text = text.strip()
text = re.split(regex_pattern, text)[0]
except Exception as e:
print(e)
pass
return text
def predict(image, max_length=64, num_beams=4):
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
pixel_values = pixel_values.to(device)
with torch.no_grad():
output_ids = model.generate(
pixel_values,
max_length=max_length,
num_beams=num_beams,
return_dict_in_generate=True,
).sequences
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
pred = post_process(preds[0])
return pred
model_name_or_path = "deepklarity/poster2plot"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = VisionEncoderDecoderModel.from_pretrained(model_name_or_path)
model.to(device)
print("Loaded model")
feature_extractor = AutoFeatureExtractor.from_pretrained(model.encoder.name_or_path)
print("Loaded feature_extractor")
tokenizer = AutoTokenizer.from_pretrained(model.decoder.name_or_path, use_fast=True)
if model.decoder.name_or_path == "gpt2":
tokenizer.pad_token = tokenizer.eos_token
print("Loaded tokenizer")
url = "https://upload.wikimedia.org/wikipedia/en/2/26/Moana_Teaser_Poster.jpg"
with Image.open(requests.get(url, stream=True).raw) as image:
pred = predict(image)
print(pred)