🚀 SDXS-512-DreamShaper-Anime
SDXS是一个能够基于提示文本实时生成高分辨率图像的模型,它采用分数蒸馏和特征匹配技术进行训练。如需了解更多信息,请参考我们的研究论文:SDXS: Real-Time One-Step Latent Diffusion Models with Image Conditions。我们将该模型作为研究的一部分进行开源。
SDXS-512-DreamShaper-Anime是SDXS-512-DreamShaper的动漫风格LoRA。请关注我们的仓库以获取最新更新。
🚀 快速开始
模型简介
SDXS模型可依据提示文本实时生成高分辨率图像,采用了分数蒸馏和特征匹配技术训练。SDXS-512-DreamShaper-Anime则是基于SDXS-512-DreamShaper的动漫风格LoRA。
依赖库安装
确保你已经安装了以下依赖库:
torch
diffusers
peft
运行示例
运行以下代码即可生成图像:
import torch
from diffusers import StableDiffusionPipeline
import peft
repo = "IDKiro/sdxs-512-dreamshaper"
lora_repo = "IDKiro/sdxs-512-dreamshaper-anime"
weight_type = torch.float16
pipe = StableDiffusionPipeline.from_pretrained(repo, torch_dtype=weight_type)
pipe.unet = PeftModel.from_pretrained(pipe.unet, lora_repo)
pipe.to("cuda")
prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"
image = pipe(
prompt,
num_inference_steps=1,
guidance_scale=0
).images[0]
image.save("output.png")
运行上述代码后,会生成一张名为output.png
的图像,示例图像如下:

💻 使用示例
基础用法
import torch
from diffusers import StableDiffusionPipeline
import peft
repo = "IDKiro/sdxs-512-dreamshaper"
lora_repo = "IDKiro/sdxs-512-dreamshaper-anime"
weight_type = torch.float16
pipe = StableDiffusionPipeline.from_pretrained(repo, torch_dtype=weight_type)
pipe.unet = PeftModel.from_pretrained(pipe.unet, lora_repo)
pipe.to("cuda")
prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"
image = pipe(
prompt,
num_inference_steps=1,
guidance_scale=0
).images[0]
image.save("output.png")
高级用法
你可以根据需求调整num_inference_steps
和guidance_scale
等参数,以获得不同风格和质量的图像。例如:
import torch
from diffusers import StableDiffusionPipeline
import peft
repo = "IDKiro/sdxs-512-dreamshaper"
lora_repo = "IDKiro/sdxs-512-dreamshaper-anime"
weight_type = torch.float16
pipe = StableDiffusionPipeline.from_pretrained(repo, torch_dtype=weight_type)
pipe.unet = PeftModel.from_pretrained(pipe.unet, lora_repo)
pipe.to("cuda")
prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"
image = pipe(
prompt,
num_inference_steps=5,
guidance_scale=5
).images[0]
image.save("output_advanced.png")
📄 许可证
本模型采用OpenRAIL++许可证进行开源。
📚 引用我们的工作
如果你使用了我们的模型或研究成果,请引用以下论文:
@article{song2024sdxs,
author = {Yuda Song, Zehao Sun, Xuanwu Yin},
title = {SDXS: Real-Time One-Step Latent Diffusion Models with Image Conditions},
journal = {arxiv},
year = {2024},
}