Ukr Paraphrase Multilingual Mpnet Base
專為烏克蘭語優化的句子嵌入模型,基於多語言MPNet架構,適用於語義相似度和特徵提取任務
下載量 1,110
發布時間 : 3/23/2024
模型概述
該模型能將烏克蘭語句子和段落映射到768維稠密向量空間,支持聚類、語義搜索等自然語言處理任務
模型特點
烏克蘭語優化
專門針對烏克蘭語進行微調,提供更準確的語義表示
多語言支持
基於多語言模型架構,支持多種語言的句子嵌入
高效語義編碼
將文本轉換為768維稠密向量,保留豐富語義信息
模型能力
句子向量化
語義相似度計算
文本聚類
跨語言特徵提取
使用案例
信息檢索
語義搜索
構建基於語義而非關鍵詞的搜索系統
提升搜索相關性和準確性
文本分析
文檔聚類
將相似文檔自動分組
實現無監督的文檔組織
🚀 lang-uk/ukr-paraphrase-multilingual-mpnet-base
這是一個針對烏克蘭語進行微調的 sentence-transformers 模型。它能將句子和段落映射到一個 768 維的密集向量空間,可用於聚類或語義搜索等任務。
微調所使用的原始模型是 sentence-transformers/paraphrase-multilingual-mpnet-base-v2
。詳情請參閱我們的論文 Contextual Embeddings for Ukrainian: A Large Language Model Approach to Word Sense Disambiguation。
🚀 快速開始
✨ 主要特性
- 支持多種語言,包括阿拉伯語(ar)、保加利亞語(bg)等眾多語言。
- 採用 Apache-2.0 許可證。
- 屬於
sentence-transformers
庫,可用於特徵提取、句子相似度計算等任務。
📦 安裝指南
若要使用此模型,需安裝 sentence-transformers:
pip install -U sentence-transformers
💻 使用示例
基礎用法(Sentence-Transformers)
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('lang-uk/ukr-paraphrase-multilingual-mpnet-base')
embeddings = model.encode(sentences)
print(embeddings)
高級用法(HuggingFace Transformers)
若未安裝 sentence-transformers,可按以下方式使用該模型:首先將輸入傳遞給 Transformer 模型,然後對上下文詞嵌入應用正確的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('lang-uk/ukr-paraphrase-multilingual-mpnet-base')
model = AutoModel.from_pretrained('lang-uk/ukr-paraphrase-multilingual-mpnet-base')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, average pooling
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📄 許可證
本項目採用 Apache-2.0 許可證。
📚 詳細文檔
若發現此模型有幫助,可引用我們的出版物 Contextual Embeddings for {U}krainian: A Large Language Model Approach to Word Sense Disambiguation:
@inproceedings{laba-etal-2023-contextual,
title = "Contextual Embeddings for {U}krainian: A Large Language Model Approach to Word Sense Disambiguation",
author = "Laba, Yurii and
Mudryi, Volodymyr and
Chaplynskyi, Dmytro and
Romanyshyn, Mariana and
Dobosevych, Oles",
editor = "Romanyshyn, Mariana",
booktitle = "Proceedings of the Second Ukrainian Natural Language Processing Workshop (UNLP)",
month = may,
year = "2023",
address = "Dubrovnik, Croatia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.unlp-1.2",
doi = "10.18653/v1/2023.unlp-1.2",
pages = "11--19",
abstract = "This research proposes a novel approach to the Word Sense Disambiguation (WSD) task in the Ukrainian language based on supervised fine-tuning of a pre-trained Large Language Model (LLM) on the dataset generated in an unsupervised way to obtain better contextual embeddings for words with multiple senses. The paper presents a method for generating a new dataset for WSD evaluation in the Ukrainian language based on the SUM dictionary. We developed a comprehensive framework that facilitates the generation of WSD evaluation datasets, enables the use of different prediction strategies, LLMs, and pooling strategies, and generates multiple performance reports. Our approach shows 77,9{\%} accuracy for lexical meaning prediction for homonyms.",
}
版權信息:Yurii Laba、Volodymyr Mudryi、Dmytro Chaplynskyi、Mariana Romanyshyn、Oles Dobosevych、烏克蘭天主教大學、lang-uk 項目,2023 年。
微調所使用的原始模型由 sentence-transformers 訓練。
信息表格
屬性 | 詳情 |
---|---|
模型類型 | sentence-transformers |
訓練數據 | 未提及 |
許可證 | Apache-2.0 |
支持語言 | 阿拉伯語(ar)、保加利亞語(bg)、加泰羅尼亞語(ca)等眾多語言 |
任務類型 | 句子相似度計算 |
Jina Embeddings V3
Jina Embeddings V3 是一個多語言句子嵌入模型,支持超過100種語言,專注於句子相似度和特徵提取任務。
文本嵌入
Transformers 支持多種語言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基於MS Marco段落排序任務訓練的交叉編碼器模型,用於信息檢索中的查詢-段落相關性評分
文本嵌入 英語
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基於蒸餾技術的稀疏檢索模型,專為OpenSearch優化,支持免推理文檔編碼,在搜索相關性和效率上優於V1版本
文本嵌入
Transformers 英語

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基於PubMedBERT的生物醫學實體表徵模型,通過自對齊預訓練優化語義關係捕捉
文本嵌入 英語
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一個強大的句子轉換器模型,專注於句子相似度和文本嵌入任務,在多個基準測試中表現出色。
文本嵌入 英語
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一個英文句子轉換器模型,專注於句子相似度任務,在多個文本嵌入基準測試中表現優異。
文本嵌入
Transformers 支持多種語言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一個多語言的句子嵌入模型,支持超過50種語言,適用於句子相似度計算等任務。
文本嵌入
Transformers 支持多種語言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一個化學語言模型,旨在實現完全由機器驅動的超快聚合物信息學。它將PSMILES字符串映射為600維密集指紋,以數值形式表示聚合物化學結構。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基於土耳其語BERT的句子嵌入模型,專為語義相似度任務優化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基於BAAI/bge-small-en-v1.5模型微調的文本嵌入模型,通過MEDI數據集與MTEB分類任務數據集訓練,優化了檢索任務的查詢編碼能力。
文本嵌入
Safetensors 英語
G
avsolatorio
945.68k
29
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98