🚀 marigold334/KR-SBERT-V40K-klueNLI-augSTS-ft
這是SNUNLP實驗室對 KR-SBERT 進行再次 微調 後的版本,可用於句子相似度計算。
🚀 快速開始
本模型可用於計算句子相似度,以下是使用示例。
✨ 主要特性
📦 安裝指南
如果你已經安裝了 sentence-transformers,使用該模型將變得非常簡單:
pip install -U sentence-transformers
💻 使用示例
基礎用法
如果你安裝了 sentence-transformers,可以這樣使用該模型:
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('snunlp/KR-SBERT-V40K-klueNLI-augSTS-ft')
embeddings = model.encode(sentences)
print(embeddings)
高級用法
如果你沒有安裝 sentence-transformers,可以按以下方式使用該模型:首先,將輸入數據傳入Transformer模型,然後對上下文詞嵌入應用正確的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('snunlp/KR-SBERT-V40K-klueNLI-augSTS')
model = AutoModel.from_pretrained('snunlp/KR-SBERT-V40K-klueNLI-augSTS-ft')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 詳細文檔
完整模型架構
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)