Ft Ms Marco MiniLM L12 V2 Claims Reranker V2
這是一個基於cross-encoder/ms-marco-MiniLM-L12-v2微調的交叉編碼器模型,用於文本重排序和語義搜索。
下載量 769
發布時間 : 5/16/2025
模型概述
該模型計算文本對的分數,可用於文本重排序和語義搜索任務。
模型特點
高效文本重排序
能夠高效地對文本對進行評分和重排序,適用於語義搜索場景。
高精度性能
在主張證據開發集上表現出色,平均精度達到0.9904。
基於MiniLM架構
基於高效的MiniLM架構,平衡了性能和計算資源需求。
模型能力
文本對評分
語義搜索
文本重排序
使用案例
信息檢索
主張證據匹配
用於匹配主張和相關的證據文本
在前5命中率達到1.0
搜索引擎重排序
對搜索引擎初步結果進行重排序以提高相關性
🚀 基於 cross-encoder/ms-marco-MiniLM-L12-v2 的交叉編碼器
這是一個基於 sentence-transformers 庫,從 cross-encoder/ms-marco-MiniLM-L12-v2 微調而來的 交叉編碼器 模型。它可以計算文本對的得分,可用於文本重排序和語義搜索。
🚀 快速開始
本模型可用於計算文本對的得分,進而實現文本重排序和語義搜索。下面將詳細介紹使用方法。
✨ 主要特性
- 基於
cross-encoder/ms-marco-MiniLM-L12-v2
微調,能夠精準計算文本對得分。 - 可用於文本重排序和語義搜索任務。
📦 安裝指南
首先,你需要安裝 sentence-transformers
庫:
pip install -U sentence-transformers
💻 使用示例
基礎用法
from sentence_transformers import CrossEncoder
# 從 🤗 Hub 下載模型
model = CrossEncoder("Davidsamuel101/ft-ms-marco-MiniLM-L12-v2-claims-reranker-v2")
# 獲取文本對的得分
pairs = [
['Not only is there no scientific evidence that CO2 is a pollutant, higher CO2 concentrations actually help ecosystems support more plant and animal life.', 'At very high concentrations (100 times atmospheric concentration, or greater), carbon dioxide can be toxic to animal life, so raising the concentration to 10,000 ppm (1%) or higher for several hours will eliminate pests such as whiteflies and spider mites in a greenhouse.'],
['Not only is there no scientific evidence that CO2 is a pollutant, higher CO2 concentrations actually help ecosystems support more plant and animal life.', 'Plants can grow as much as 50 percent faster in concentrations of 1,000 ppm CO 2 when compared with ambient conditions, though this assumes no change in climate and no limitation on other nutrients.'],
['Not only is there no scientific evidence that CO2 is a pollutant, higher CO2 concentrations actually help ecosystems support more plant and animal life.', 'Higher carbon dioxide concentrations will favourably affect plant growth and demand for water.'],
['Not only is there no scientific evidence that CO2 is a pollutant, higher CO2 concentrations actually help ecosystems support more plant and animal life.', "Carbon dioxide in the Earth's atmosphere is essential to life and to most of the planetary biosphere."],
['Not only is there no scientific evidence that CO2 is a pollutant, higher CO2 concentrations actually help ecosystems support more plant and animal life.', 'Rennie 2009: "Claim 1: Anthropogenic CO2 can\'t be changing climate, because CO2 is only a trace gas in the atmosphere and the amount produced by humans is dwarfed by the amount from volcanoes and other natural sources.'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# 或者根據與單個文本的相似度對不同文本進行排序
ranks = model.rank(
'Not only is there no scientific evidence that CO2 is a pollutant, higher CO2 concentrations actually help ecosystems support more plant and animal life.',
[
'At very high concentrations (100 times atmospheric concentration, or greater), carbon dioxide can be toxic to animal life, so raising the concentration to 10,000 ppm (1%) or higher for several hours will eliminate pests such as whiteflies and spider mites in a greenhouse.',
'Plants can grow as much as 50 percent faster in concentrations of 1,000 ppm CO 2 when compared with ambient conditions, though this assumes no change in climate and no limitation on other nutrients.',
'Higher carbon dioxide concentrations will favourably affect plant growth and demand for water.',
"Carbon dioxide in the Earth's atmosphere is essential to life and to most of the planetary biosphere.",
'Rennie 2009: "Claim 1: Anthropogenic CO2 can\'t be changing climate, because CO2 is only a trace gas in the atmosphere and the amount produced by humans is dwarfed by the amount from volcanoes and other natural sources.',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
📚 詳細文檔
模型詳情
模型描述
屬性 | 詳情 |
---|---|
模型類型 | 交叉編碼器 |
基礎模型 | cross-encoder/ms-marco-MiniLM-L12-v2 |
最大序列長度 | 512 個詞元 |
輸出標籤數量 | 1 個標籤 |
模型來源
- 文檔:Sentence Transformers 文檔
- 文檔:Cross Encoder 文檔
- 倉庫:GitHub 上的 Sentence Transformers
- Hugging Face:Hugging Face 上的 Cross Encoders
評估
指標
交叉編碼器重排序
- 數據集:
claims-evidence-dev
- 使用
CrossEncoderRerankingEvaluator
進行評估,參數如下:{ "at_k": 5, "always_rerank_positives": true }
指標 | 值 |
---|---|
map | 0.9904 (-0.0096) |
mrr@5 | 1.0000 (+0.0000) |
ndcg@5 | 0.9882 (-0.0118) |
訓練詳情
訓練數據集
未命名數據集
- 大小:23,770 個訓練樣本
- 列:
text1
、text2
和label
- 基於前 1000 個樣本的近似統計信息:
text1 text2 label 類型 字符串 字符串 整數 詳情 - 最小:38 個字符
- 平均:118.57 個字符
- 最大:226 個字符
- 最小:14 個字符
- 平均:144.96 個字符
- 最大:1176 個字符
- 0:~83.70%
- 1:~16.30%
- 樣本:
text1 text2 label Not only is there no scientific evidence that CO2 is a pollutant, higher CO2 concentrations actually help ecosystems support more plant and animal life.
At very high concentrations (100 times atmospheric concentration, or greater), carbon dioxide can be toxic to animal life, so raising the concentration to 10,000 ppm (1%) or higher for several hours will eliminate pests such as whiteflies and spider mites in a greenhouse.
1
Not only is there no scientific evidence that CO2 is a pollutant, higher CO2 concentrations actually help ecosystems support more plant and animal life.
Plants can grow as much as 50 percent faster in concentrations of 1,000 ppm CO 2 when compared with ambient conditions, though this assumes no change in climate and no limitation on other nutrients.
1
Not only is there no scientific evidence that CO2 is a pollutant, higher CO2 concentrations actually help ecosystems support more plant and animal life.
Higher carbon dioxide concentrations will favourably affect plant growth and demand for water.
1
- 損失函數:
MultipleNegativesRankingLoss
,參數如下:{ "scale": 10.0, "num_negatives": 4, "activation_fn": "torch.nn.modules.activation.Sigmoid" }
訓練超參數
非默認超參數
eval_strategy
:stepsper_device_train_batch_size
:16learning_rate
:3e-06num_train_epochs
:5bf16
:Trueload_best_model_at_end
:True
所有超參數
點擊展開
overwrite_output_dir
:Falsedo_predict
:Falseeval_strategy
:stepsprediction_loss_only
:Trueper_device_train_batch_size
:16per_device_eval_batch_size
:8per_gpu_train_batch_size
:Noneper_gpu_eval_batch_size
:Nonegradient_accumulation_steps
:1eval_accumulation_steps
:Nonetorch_empty_cache_steps
:Nonelearning_rate
:3e-06weight_decay
:0.0adam_beta1
:0.9adam_beta2
:0.999adam_epsilon
:1e-08max_grad_norm
:1.0num_train_epochs
:5max_steps
:-1lr_scheduler_type
:linearlr_scheduler_kwargs
:{}warmup_ratio
:0.0warmup_steps
:0log_level
:passivelog_level_replica
:warninglog_on_each_node
:Truelogging_nan_inf_filter
:Truesave_safetensors
:Truesave_on_each_node
:Falsesave_only_model
:Falserestore_callback_states_from_checkpoint
:Falseno_cuda
:Falseuse_cpu
:Falseuse_mps_device
:Falseseed
:42data_seed
:Nonejit_mode_eval
:Falseuse_ipex
:Falsebf16
:Truefp16
:Falsefp16_opt_level
:O1half_precision_backend
:autobf16_full_eval
:Falsefp16_full_eval
:Falsetf32
:Nonelocal_rank
:0ddp_backend
:Nonetpu_num_cores
:Nonetpu_metrics_debug
:Falsedebug
:[]dataloader_drop_last
:Falsedataloader_num_workers
:0dataloader_prefetch_factor
:Nonepast_index
:-1disable_tqdm
:Falseremove_unused_columns
:Truelabel_names
:Noneload_best_model_at_end
:Trueignore_data_skip
:Falsefsdp
:[]fsdp_min_num_params
:0fsdp_config
:{'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
:0fsdp_transformer_layer_cls_to_wrap
:Noneaccelerator_config
:{'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
:Nonelabel_smoothing_factor
:0.0optim
:adamw_torchoptim_args
:Noneadafactor
:Falsegroup_by_length
:Falselength_column_name
:lengthddp_find_unused_parameters
:Noneddp_bucket_cap_mb
:Noneddp_broadcast_buffers
:Falsedataloader_pin_memory
:Truedataloader_persistent_workers
:Falseskip_memory_metrics
:Trueuse_legacy_prediction_loop
:Falsepush_to_hub
:Falseresume_from_checkpoint
:Nonehub_model_id
:Nonehub_strategy
:every_savehub_private_repo
:Nonehub_always_push
:Falsegradient_checkpointing
:Falsegradient_checkpointing_kwargs
:Noneinclude_inputs_for_metrics
:Falseinclude_for_metrics
:[]eval_do_concat_batches
:Truefp16_backend
:autopush_to_hub_model_id
:Nonepush_to_hub_organization
:Nonemp_parameters
:auto_find_batch_size
:Falsefull_determinism
:Falsetorchdynamo
:Noneray_scope
:lastddp_timeout
:1800torch_compile
:Falsetorch_compile_backend
:Nonetorch_compile_mode
:Noneinclude_tokens_per_second
:Falseinclude_num_input_tokens_seen
:Falseneftune_noise_alpha
:Noneoptim_target_modules
:Nonebatch_eval_metrics
:Falseeval_on_start
:Falseuse_liger_kernel
:Falseeval_use_gather_object
:Falseaverage_tokens_across_devices
:Falseprompts
:Nonebatch_sampler
:batch_samplermulti_dataset_batch_sampler
:proportional
訓練日誌
點擊展開
輪次 | 步數 | 訓練損失 | claims-evidence-dev_ndcg@5 |
---|---|---|---|
0.0336 | 50 | 1.2496 | - |
0.0673 | 100 | 1.2605 | 0.9523 (-0.0477) |
0.1009 | 150 | 1.1969 | - |
0.1346 | 200 | 1.2353 | 0.9529 (-0.0471) |
0.1682 | 250 | 1.2114 | - |
0.2019 | 300 | 1.1438 | 0.9551 (-0.0449) |
0.2355 | 350 | 1.2062 | - |
0.2692 | 400 | 1.1631 | 0.9568 (-0.0432) |
0.3028 | 450 | 1.115 | - |
0.3365 | 500 | 1.2029 | 0.9582 (-0.0418) |
0.3701 | 550 | 1.0615 | - |
0.4038 | 600 | 1.185 | 0.9649 (-0.0351) |
0.4374 | 650 | 1.0651 | - |
0.4711 | 700 | 1.0951 | 0.9682 (-0.0318) |
0.5047 | 750 | 1.1267 | - |
0.5384 | 800 | 1.0822 | 0.9727 (-0.0273) |
0.5720 | 850 | 1.0658 | - |
0.6057 | 900 | 1.0113 | 0.9785 (-0.0215) |
0.6393 | 950 | 1.0578 | - |
0.6729 | 1000 | 1.074 | 0.9829 (-0.0171) |
0.7066 | 1050 | 1.0287 | - |
0.7402 | 1100 | 0.9337 | 0.9873 (-0.0127) |
0.7739 | 1150 | 0.9798 | - |
0.8075 | 1200 | 0.9697 | 0.9899 (-0.0101) |
0.8412 | 1250 | 0.984 | - |
0.8748 | 1300 | 0.9913 | 0.9898 (-0.0102) |
0.9085 | 1350 | 1.0126 | - |
0.9421 | 1400 | 0.9458 | 0.9897 (-0.0103) |
0.9758 | 1450 | 0.9594 | - |
1.0094 | 1500 | 0.9798 | 0.9896 (-0.0104) |
1.0431 | 1550 | 0.9599 | - |
1.0767 | 1600 | 0.9485 | 0.9887 (-0.0113) |
1.1104 | 1650 | 0.9021 | - |
1.1440 | 1700 | 0.9778 | 0.9887 (-0.0113) |
1.1777 | 1750 | 0.9836 | - |
1.2113 | 1800 | 0.939 | 0.9912 (-0.0088) |
1.2450 | 1850 | 0.9476 | - |
1.2786 | 1900 | 0.964 | 0.9914 (-0.0086) |
1.3122 | 1950 | 0.9238 | - |
1.3459 | 2000 | 0.9811 | 0.9895 (-0.0105) |
1.3795 | 2050 | 0.905 | - |
1.4132 | 2100 | 0.8979 | 0.9896 (-0.0104) |
1.4468 | 2150 | 0.8998 | - |
1.4805 | 2200 | 0.9016 | 0.9896 (-0.0104) |
1.5141 | 2250 | 0.9183 | - |
1.5478 | 2300 | 0.8805 | 0.9896 (-0.0104) |
1.5814 | 2350 | 0.8672 | - |
1.6151 | 2400 | 0.8822 | 0.9896 (-0.0104) |
1.6487 | 2450 | 0.8724 | - |
1.6824 | 2500 | 0.9397 | 0.9883 (-0.0117) |
1.7160 | 2550 | 0.8903 | - |
1.7497 | 2600 | 0.9305 | 0.9882 (-0.0118) |
1.7833 | 2650 | 0.8741 | - |
1.8170 | 2700 | 0.8951 | 0.9874 (-0.0126) |
1.8506 | 2750 | 0.8958 | - |
1.8843 | 2800 | 0.8529 | 0.9873 (-0.0127) |
1.9179 | 2850 | 0.9468 | - |
1.9515 | 2900 | 0.8683 | 0.9882 (-0.0118) |
1.9852 | 2950 | 0.9145 | - |
2.0188 | 3000 | 0.9137 | 0.9883 (-0.0117) |
2.0525 | 3050 | 0.8175 | - |
2.0861 | 3100 | 0.911 | 0.9883 (-0.0117) |
2.1198 | 3150 | 0.8749 | - |
2.1534 | 3200 | 0.8491 | 0.9883 (-0.0117) |
2.1871 | 3250 | 0.9057 | - |
2.2207 | 3300 | 0.9034 | 0.9882 (-0.0118) |
2.2544 | 3350 | 0.8505 | - |
2.2880 | 3400 | 0.8762 | 0.9883 (-0.0117) |
2.3217 | 3450 | 0.8974 | - |
2.3553 | 3500 | 0.8832 | 0.9884 (-0.0116) |
2.3890 | 3550 | 0.851 | - |
2.4226 | 3600 | 0.8584 | 0.9890 (-0.0110) |
2.4563 | 3650 | 0.9032 | - |
2.4899 | 3700 | 0.8963 | 0.9893 (-0.0107) |
2.5236 | 3750 | 0.8756 | - |
2.5572 | 3800 | 0.843 | 0.9882 (-0.0118) |
2.5908 | 3850 | 0.8778 | - |
2.6245 | 3900 | 0.8434 | 0.9882 (-0.0118) |
2.6581 | 3950 | 0.9193 | - |
2.6918 | 4000 | 0.8724 | 0.9875 (-0.0125) |
2.7254 | 4050 | 0.9062 | - |
2.7591 | 4100 | 0.8807 | 0.9875 (-0.0125) |
2.7927 | 4150 | 0.8252 | - |
2.8264 | 4200 | 0.8725 | 0.9875 (-0.0125) |
2.8600 | 4250 | 0.9094 | - |
2.8937 | 4300 | 0.8589 | 0.9874 (-0.0126) |
2.9273 | 4350 | 0.8625 | - |
2.9610 | 4400 | 0.8138 | 0.9874 (-0.0126) |
2.9946 | 4450 | 0.9217 | - |
3.0283 | 4500 | 0.8871 | 0.9872 (-0.0128) |
3.0619 | 4550 | 0.8504 | - |
3.0956 | 4600 | 0.944 | 0.9873 (-0.0127) |
3.1292 | 4650 | 0.8258 | - |
3.1629 | 4700 | 0.9054 | 0.9874 (-0.0126) |
3.1965 | 4750 | 0.8297 | - |
3.2301 | 4800 | 0.8483 | 0.9875 (-0.0125) |
3.2638 | 4850 | 0.909 | - |
3.2974 | 4900 | 0.8486 | 0.9892 (-0.0108) |
3.3311 | 4950 | 0.8937 | - |
3.3647 | 5000 | 0.8821 | 0.9874 (-0.0126) |
3.3984 | 5050 | 0.873 | - |
3.4320 | 5100 | 0.8773 | 0.9874 (-0.0126) |
3.4657 | 5150 | 0.8592 | - |
3.4993 | 5200 | 0.8449 | 0.9882 (-0.0118) |
3.5330 | 5250 | 0.8651 | - |
3.5666 | 5300 | 0.8943 | 0.9882 (-0.0118) |
3.6003 | 5350 | 0.8535 | - |
3.6339 | 5400 | 0.8687 | 0.9882 (-0.0118) |
3.6676 | 5450 | 0.9213 | - |
3.7012 | 5500 | 0.887 | 0.9882 (-0.0118) |
3.7349 | 5550 | 0.8787 | - |
3.7685 | 5600 | 0.8466 | 0.9882 (-0.0118) |
3.8022 | 5650 | 0.8517 | - |
3.8358 | 5700 | 0.8349 | 0.9883 (-0.0117) |
3.8694 | 5750 | 0.8647 | - |
3.9031 | 5800 | 0.8406 | 0.9882 (-0.0118) |
3.9367 | 5850 | 0.8385 | - |
3.9704 | 5900 | 0.8631 | 0.9882 (-0.0118) |
4.0040 | 5950 | 0.823 | - |
4.0377 | 6000 | 0.9163 | 0.9881 (-0.0119) |
4.0713 | 6050 | 0.8373 | - |
4.1050 | 6100 | 0.892 | 0.9882 (-0.0118) |
4.1386 | 6150 | 0.8666 | - |
4.1723 | 6200 | 0.8536 | 0.9882 (-0.0118) |
4.2059 | 6250 | 0.8784 | - |
4.2396 | 6300 | 0.9616 | 0.9882 (-0.0118) |
4.2732 | 6350 | 0.8464 | - |
4.3069 | 6400 | 0.865 | 0.9882 (-0.0118) |
4.3405 | 6450 | 0.8411 | - |
4.3742 | 6500 | 0.8943 | 0.9882 (-0.0118) |
4.4078 | 6550 | 0.8577 | - |
4.4415 | 6600 | 0.8683 | 0.9882 (-0.0118) |
4.4751 | 6650 | 0.8706 | - |
4.5087 | 6700 | 0.8645 | 0.9882 (-0.0118) |
4.5424 | 6750 | 0.8899 | - |
4.5760 | 6800 | 0.8593 | 0.9882 (-0.0118) |
4.6097 | 6850 | 0.8838 | - |
4.6433 | 6900 | 0.8379 | 0.9882 (-0.0118) |
4.6770 | 6950 | 0.8759 | - |
4.7106 | 7000 | 0.8608 | 0.9882 (-0.0118) |
4.7443 | 7050 | 0.8858 | - |
4.7779 | 7100 | 0.8594 | 0.9882 (-0.0118) |
4.8116 | 7150 | 0.8403 | - |
4.8452 | 7200 | 0.8898 | 0.9882 (-0.0118) |
4.8789 | 7250 | 0.8382 | - |
4.9125 | 7300 | 0.8307 | 0.9882 (-0.0118) |
4.9462 | 7350 | 0.8601 | - |
4.9798 | 7400 | 0.8076 | 0.9882 (-0.0118) |
- 加粗行表示保存的檢查點。
框架版本
- Python:3.13.2
- Sentence Transformers:4.1.0
- Transformers:4.51.3
- PyTorch:2.7.0+cu128
- Accelerate:1.6.0
- Datasets:3.6.0
- Tokenizers:0.21.1
📄 引用
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
Jina Embeddings V3
Jina Embeddings V3 是一個多語言句子嵌入模型,支持超過100種語言,專注於句子相似度和特徵提取任務。
文本嵌入
Transformers 支持多種語言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基於MS Marco段落排序任務訓練的交叉編碼器模型,用於信息檢索中的查詢-段落相關性評分
文本嵌入 英語
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基於蒸餾技術的稀疏檢索模型,專為OpenSearch優化,支持免推理文檔編碼,在搜索相關性和效率上優於V1版本
文本嵌入
Transformers 英語

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基於PubMedBERT的生物醫學實體表徵模型,通過自對齊預訓練優化語義關係捕捉
文本嵌入 英語
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一個強大的句子轉換器模型,專注於句子相似度和文本嵌入任務,在多個基準測試中表現出色。
文本嵌入 英語
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一個英文句子轉換器模型,專注於句子相似度任務,在多個文本嵌入基準測試中表現優異。
文本嵌入
Transformers 支持多種語言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一個多語言的句子嵌入模型,支持超過50種語言,適用於句子相似度計算等任務。
文本嵌入
Transformers 支持多種語言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一個化學語言模型,旨在實現完全由機器驅動的超快聚合物信息學。它將PSMILES字符串映射為600維密集指紋,以數值形式表示聚合物化學結構。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基於土耳其語BERT的句子嵌入模型,專為語義相似度任務優化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基於BAAI/bge-small-en-v1.5模型微調的文本嵌入模型,通過MEDI數據集與MTEB分類任務數據集訓練,優化了檢索任務的查詢編碼能力。
文本嵌入
Safetensors 英語
G
avsolatorio
945.68k
29
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98