Reranker ModernBERT Large Gooaq Bce
這是一個從ModernBERT-large微調而來的交叉編碼器模型,用於計算文本對的分數,適用於文本重排序和語義搜索任務。
下載量 596
發布時間 : 3/25/2025
模型概述
該模型基於ModernBERT-large架構,通過sentence-transformers庫訓練,專門用於文本對的相似性評分和重排序任務。它在多個數據集上表現出色,特別擅長問答相關內容的排序。
模型特點
高性能重排序
在GooAQ開發集上達到0.7946的NDCG@10分數,顯著優於基線模型
大上下文支持
支持最大8192個標記的序列長度,適合處理長文本
多數據集適應性
在NanoMSMARCO、NanoNFCorpus和NanoNQ等多個數據集上表現良好
模型能力
文本相似性評分
搜索結果重排序
問答對相關性評估
語義搜索增強
使用案例
搜索引擎優化
搜索結果重排序
對搜索引擎返回的結果進行重新排序,提高最相關結果的排名
在GooAQ數據集上NDCG@10提升20.34%
問答系統
答案相關性評估
評估候選答案與問題的相關性,篩選最佳答案
在NanoNQ數據集上MAP達到0.6103
🚀 在GooAQ上訓練的ModernBERT-large模型
這是一個基於answerdotai/ModernBERT-large,使用sentence-transformers庫微調得到的交叉編碼器模型。它可以計算文本對的得分,可用於文本重排序和語義搜索。
訓練腳本請參考training_gooaq_bce.py,該腳本僅將基礎模型從answerdotai/ModernBERT-base更新為answerdotai/ModernBERT-large。此腳本也在交叉編碼器>訓練概述文檔和使用Sentence Transformers v4訓練和微調重排序模型博客文章中有所描述。
🚀 快速開始
直接使用(Sentence Transformers)
首先安裝Sentence Transformers庫:
pip install -U sentence-transformers
然後,你可以加載此模型並進行推理:
from sentence_transformers import CrossEncoder
# 從🤗 Hub下載
model = CrossEncoder("tomaarsen/reranker-ModernBERT-large-gooaq-bce")
# 獲取文本對的得分
pairs = [
['what are the characteristics and elements of poetry?', 'The elements of poetry include meter, rhyme, form, sound, and rhythm (timing). Different poets use these elements in many different ways.'],
['what are the characteristics and elements of poetry?', "What's the first rule of writing poetry? That there are no rules — it's all up to you! Of course there are different poetic forms and devices, and free verse poems are one of the many poetic styles; they have no structure when it comes to format or even rhyming."],
['what are the characteristics and elements of poetry?', "['Blank verse. Blank verse is poetry written with a precise meter—almost always iambic pentameter—that does not rhyme. ... ', 'Rhymed poetry. In contrast to blank verse, rhymed poems rhyme by definition, although their scheme varies. ... ', 'Free verse. ... ', 'Epics. ... ', 'Narrative poetry. ... ', 'Haiku. ... ', 'Pastoral poetry. ... ', 'Sonnet.']"],
['what are the characteristics and elements of poetry?', 'The main component of poetry is its meter (the regular pattern of strong and weak stress). When a poem has a recognizable but varying pattern of stressed and unstressed syllables, the poetry is written in verse. ... There are many possible patterns of verse, and the basic pattern of each unit is called a foot.'],
['what are the characteristics and elements of poetry?', "Some poetry may not make sense to you. But that's because poets don't write to be understood by others. They write because they must. The feelings and emotions that reside within them need to be expressed."],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# 或者根據與單個文本的相似度對不同文本進行排序
ranks = model.rank(
'what are the characteristics and elements of poetry?',
[
'The elements of poetry include meter, rhyme, form, sound, and rhythm (timing). Different poets use these elements in many different ways.',
"What's the first rule of writing poetry? That there are no rules — it's all up to you! Of course there are different poetic forms and devices, and free verse poems are one of the many poetic styles; they have no structure when it comes to format or even rhyming.",
"['Blank verse. Blank verse is poetry written with a precise meter—almost always iambic pentameter—that does not rhyme. ... ', 'Rhymed poetry. In contrast to blank verse, rhymed poems rhyme by definition, although their scheme varies. ... ', 'Free verse. ... ', 'Epics. ... ', 'Narrative poetry. ... ', 'Haiku. ... ', 'Pastoral poetry. ... ', 'Sonnet.']",
'The main component of poetry is its meter (the regular pattern of strong and weak stress). When a poem has a recognizable but varying pattern of stressed and unstressed syllables, the poetry is written in verse. ... There are many possible patterns of verse, and the basic pattern of each unit is called a foot.',
"Some poetry may not make sense to you. But that's because poets don't write to be understood by others. They write because they must. The feelings and emotions that reside within them need to be expressed.",
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
✨ 主要特性
- 基於
answerdotai/ModernBERT-large
模型微調,具備強大的文本理解能力。 - 作為交叉編碼器,能夠計算文本對的得分,適用於文本重排序和語義搜索任務。
- 支持長序列輸入,最大序列長度可達8192個標記。
📦 安裝指南
安裝Sentence Transformers庫:
pip install -U sentence-transformers
💻 使用示例
基礎用法
from sentence_transformers import CrossEncoder
# 從🤗 Hub下載
model = CrossEncoder("tomaarsen/reranker-ModernBERT-large-gooaq-bce")
# 獲取文本對的得分
pairs = [
['what are the characteristics and elements of poetry?', 'The elements of poetry include meter, rhyme, form, sound, and rhythm (timing). Different poets use these elements in many different ways.'],
['what are the characteristics and elements of poetry?', "What's the first rule of writing poetry? That there are no rules — it's all up to you! Of course there are different poetic forms and devices, and free verse poems are one of the many poetic styles; they have no structure when it comes to format or even rhyming."],
['what are the characteristics and elements of poetry?', "['Blank verse. Blank verse is poetry written with a precise meter—almost always iambic pentameter—that does not rhyme. ... ', 'Rhymed poetry. In contrast to blank verse, rhymed poems rhyme by definition, although their scheme varies. ... ', 'Free verse. ... ', 'Epics. ... ', 'Narrative poetry. ... ', 'Haiku. ... ', 'Pastoral poetry. ... ', 'Sonnet.']"],
['what are the characteristics and elements of poetry?', 'The main component of poetry is its meter (the regular pattern of strong and weak stress). When a poem has a recognizable but varying pattern of stressed and unstressed syllables, the poetry is written in verse. ... There are many possible patterns of verse, and the basic pattern of each unit is called a foot.'],
['what are the characteristics and elements of poetry?', "Some poetry may not make sense to you. But that's because poets don't write to be understood by others. They write because they must. The feelings and emotions that reside within them need to be expressed."],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
高級用法
# 根據與單個文本的相似度對不同文本進行排序
ranks = model.rank(
'what are the characteristics and elements of poetry?',
[
'The elements of poetry include meter, rhyme, form, sound, and rhythm (timing). Different poets use these elements in many different ways.',
"What's the first rule of writing poetry? That there are no rules — it's all up to you! Of course there are different poetic forms and devices, and free verse poems are one of the many poetic styles; they have no structure when it comes to format or even rhyming.",
"['Blank verse. Blank verse is poetry written with a precise meter—almost always iambic pentameter—that does not rhyme. ... ', 'Rhymed poetry. In contrast to blank verse, rhymed poems rhyme by definition, although their scheme varies. ... ', 'Free verse. ... ', 'Epics. ... ', 'Narrative poetry. ... ', 'Haiku. ... ', 'Pastoral poetry. ... ', 'Sonnet.']",
'The main component of poetry is its meter (the regular pattern of strong and weak stress). When a poem has a recognizable but varying pattern of stressed and unstressed syllables, the poetry is written in verse. ... There are many possible patterns of verse, and the basic pattern of each unit is called a foot.',
"Some poetry may not make sense to you. But that's because poets don't write to be understood by others. They write because they must. The feelings and emotions that reside within them need to be expressed.",
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
📚 詳細文檔
模型詳情
模型描述
屬性 | 詳情 |
---|---|
模型類型 | 交叉編碼器 |
基礎模型 | answerdotai/ModernBERT-large |
最大序列長度 | 8192個標記 |
輸出標籤數量 | 1個標籤 |
語言 | 英語 |
許可證 | Apache-2.0 |
模型來源
- 文檔:Sentence Transformers文檔
- 文檔:交叉編碼器文檔
- 倉庫:GitHub上的Sentence Transformers
- Hugging Face:Hugging Face上的交叉編碼器
評估
指標
交叉編碼器重排序(gooaq-dev
數據集,always_rerank_positives=False
)
使用CrossEncoderRerankingEvaluator
進行評估,參數如下:
{
"at_k": 10,
"always_rerank_positives": false
}
指標 | 值 |
---|---|
map | 0.7586 (+0.2275) |
mrr@10 | 0.7576 (+0.2336) |
ndcg@10 | 0.7946 (+0.2034) |
交叉編碼器重排序(gooaq-dev
數據集,always_rerank_positives=True
)
使用CrossEncoderRerankingEvaluator
進行評估,參數如下:
{
"at_k": 10,
"always_rerank_positives": true
}
指標 | 值 |
---|---|
map | 0.8176 (+0.2865) |
mrr@10 | 0.8166 (+0.2926) |
ndcg@10 | 0.8581 (+0.2669) |
交叉編碼器重排序(NanoMSMARCO_R100
、NanoNFCorpus_R100
和NanoNQ_R100
數據集,always_rerank_positives=True
)
使用CrossEncoderRerankingEvaluator
進行評估,參數如下:
{
"at_k": 10,
"always_rerank_positives": true
}
指標 | NanoMSMARCO_R100 | NanoNFCorpus_R100 | NanoNQ_R100 |
---|---|---|---|
map | 0.5488 (+0.0592) | 0.3682 (+0.1072) | 0.6103 (+0.1907) |
mrr@10 | 0.5443 (+0.0668) | 0.5677 (+0.0678) | 0.6108 (+0.1841) |
ndcg@10 | 0.6323 (+0.0918) | 0.4136 (+0.0886) | 0.6570 (+0.1564) |
交叉編碼器Nano BEIR(NanoBEIR_R100_mean
數據集)
使用CrossEncoderNanoBEIREvaluator
進行評估,參數如下:
{
"dataset_names": [
"msmarco",
"nfcorpus",
"nq"
],
"rerank_k": 100,
"at_k": 10,
"always_rerank_positives": true
}
指標 | 值 |
---|---|
map | 0.5091 (+0.1190) |
mrr@10 | 0.5743 (+0.1063) |
ndcg@10 | 0.5676 (+0.1123) |
訓練詳情
訓練數據集
未命名數據集
- 大小:578,402個訓練樣本
- 列:
question
、answer
和label
- 基於前1000個樣本的近似統計信息:
| | 問題 | 答案 | 標籤 |
|------|------|------|------|
| 類型 | 字符串 | 字符串 | 整數 |
| 詳情 |
- 最小:22個字符
- 平均:43.99個字符
- 最大:93個字符
- 最小:51個字符
- 平均:252.75個字符
- 最大:378個字符
- 0:約82.30%
- 1:約17.70%
- 樣本:
| 問題 | 答案 | 標籤 |
|------|------|------|
|
what are the characteristics and elements of poetry?
|The elements of poetry include meter, rhyme, form, sound, and rhythm (timing). Different poets use these elements in many different ways.
|1
| |what are the characteristics and elements of poetry?
|What's the first rule of writing poetry? That there are no rules — it's all up to you! Of course there are different poetic forms and devices, and free verse poems are one of the many poetic styles; they have no structure when it comes to format or even rhyming.
|0
| |what are the characteristics and elements of poetry?
|['Blank verse. Blank verse is poetry written with a precise meter—almost always iambic pentameter—that does not rhyme. ... ', 'Rhymed poetry. In contrast to blank verse, rhymed poems rhyme by definition, although their scheme varies. ... ', 'Free verse. ... ', 'Epics. ... ', 'Narrative poetry. ... ', 'Haiku. ... ', 'Pastoral poetry. ... ', 'Sonnet.']
|0
| - 損失函數:
BinaryCrossEntropyLoss
,參數如下:
{
"activation_fn": "torch.nn.modules.linear.Identity",
"pos_weight": 5
}
訓練超參數
非默認超參數
eval_strategy
:stepsper_device_train_batch_size
:64per_device_eval_batch_size
:64learning_rate
:2e-05num_train_epochs
:1warmup_ratio
:0.1seed
:12bf16
:Truedataloader_num_workers
:4load_best_model_at_end
:True
所有超參數
點擊展開
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 12data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 4dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
訓練日誌
輪次 | 步數 | 訓練損失 | gooaq-dev_ndcg@10 | NanoMSMARCO_R100_ndcg@10 | NanoNFCorpus_R100_ndcg@10 | NanoNQ_R100_ndcg@10 | NanoBEIR_R100_mean_ndcg@10 |
---|---|---|---|---|---|---|---|
-1 | -1 | - | 0.1279 (-0.4633) | 0.0555 (-0.4849) | 0.1735 (-0.1516) | 0.0686 (-0.4320) | 0.0992 (-0.3562) |
0.0001 | 1 | 1.2592 | - | - | - | - | - |
0.0221 | 200 | 1.1826 | - | - | - | - | - |
0.0443 | 400 | 0.7653 | - | - | - | - | - |
0.0664 | 600 | 0.6423 | - | - | - | - | - |
0.0885 | 800 | 0.6 | - | - | - | - | - |
0.1106 | 1000 | 0.5753 | 0.7444 (+0.1531) | 0.5365 (-0.0039) | 0.4249 (+0.0998) | 0.6111 (+0.1105) | 0.5242 (+0.0688) |
0.1328 | 1200 | 0.5313 | - | - | - | - | - |
0.1549 | 1400 | 0.5315 | - | - | - | - | - |
0.1770 | 1600 | 0.5195 | - | - | - | - | - |
0.1992 | 1800 | 0.5136 | - | - | - | - | - |
0.2213 | 2000 | 0.4782 | 0.7774 (+0.1862) | 0.6080 (+0.0676) | 0.4371 (+0.1120) | 0.6520 (+0.1513) | 0.5657 (+0.1103) |
0.2434 | 2200 | 0.5026 | - | - | - | - | - |
0.2655 | 2400 | 0.5011 | - | - | - | - | - |
0.2877 | 2600 | 0.4893 | - | - | - | - | - |
0.3098 | 2800 | 0.4855 | - | - | - | - | - |
0.3319 | 3000 | 0.4687 | 0.7692 (+0.1779) | 0.6181 (+0.0777) | 0.4273 (+0.1023) | 0.6686 (+0.1679) | 0.5713 (+0.1160) |
0.3541 | 3200 | 0.4619 | - | - | - | - | - |
0.3762 | 3400 | 0.4626 | - | - | - | - | - |
0.3983 | 3600 | 0.4504 | - | - | - | - | - |
0.4204 | 3800 | 0.4435 | - | - | - | - | - |
0.4426 | 4000 | 0.4573 | 0.7776 (+0.1864) | 0.6589 (+0.1184) | 0.4262 (+0.1012) | 0.6634 (+0.1628) | 0.5828 (+0.1275) |
0.4647 | 4200 | 0.4608 | - | - | - | - | - |
0.4868 | 4400 | 0.4275 | - | - | - | - | - |
0.5090 | 4600 | 0.4317 | - | - | - | - | - |
0.5311 | 4800 | 0.4427 | - | - | - | - | - |
0.5532 | 5000 | 0.4245 | 0.7795 (+0.1883) | 0.6021 (+0.0617) | 0.4387 (+0.1137) | 0.6560 (+0.1553) | 0.5656 (+0.1102) |
0.5753 | 5200 | 0.4243 | - | - | - | - | - |
0.5975 | 5400 | 0.4295 | - | - | - | - | - |
0.6196 | 5600 | 0.422 | - | - | - | - | - |
0.6417 | 5800 | 0.4165 | - | - | - | - | - |
0.6639 | 6000 | 0.4281 | 0.7859 (+0.1946) | 0.6404 (+0.1000) | 0.4449 (+0.1199) | 0.6458 (+0.1451) | 0.5770 (+0.1217) |
0.6860 | 6200 | 0.4155 | - | - | - | - | - |
0.7081 | 6400 | 0.4189 | - | - | - | - | - |
0.7303 | 6600 | 0.4066 | - | - | - | - | - |
0.7524 | 6800 | 0.4114 | - | - | - | - | - |
0.7745 | 7000 | 0.4111 | 0.7875 (+0.1963) | 0.6358 (+0.0954) | 0.4289 (+0.1038) | 0.6358 (+0.1351) | 0.5668 (+0.1114) |
0.7966 | 7200 | 0.3949 | - | - | - | - | - |
0.8188 | 7400 | 0.4019 | - | - | - | - | - |
0.8409 | 7600 | 0.395 | - | - | - | - | - |
0.8630 | 7800 | 0.3885 | - | - | - | - | - |
0.8852 | 8000 | 0.3991 | 0.7946 (+0.2034) | 0.6323 (+0.0918) | 0.4136 (+0.0886) | 0.6570 (+0.1564) | 0.5676 (+0.1123) |
0.9073 | 8200 | 0.3894 | - | - | - | - | - |
0.9294 | 8400 | 0.392 | - | - | - | - | - |
0.9515 | 8600 | 0.3853 | - | - | - | - | - |
0.9737 | 8800 | 0.3691 | - | - | - | - | - |
0.9958 | 9000 | 0.3784 | 0.7936 (+0.2024) | 0.6481 (+0.1077) | 0.4211 (+0.0961) | 0.6439 (+0.1433) | 0.5711 (+0.1157) |
-1 | -1 | - | 0.7946 (+0.2034) | 0.6323 (+0.0918) | 0.4136 (+0.0886) | 0.6570 (+0.1564) | 0.5676 (+0.1123) |
加粗行表示保存的檢查點。
框架版本
- Python:3.11.10
- Sentence Transformers:3.5.0.dev0
- Transformers:4.49.0
- PyTorch:2.5.1+cu124
- Accelerate:1.5.2
- Datasets:2.21.0
- Tokenizers:0.21.0
🔧 技術細節
該模型基於answerdotai/ModernBERT-large
進行微調,使用BinaryCrossEntropyLoss
作為損失函數,在訓練過程中採用了一系列超參數進行優化,如學習率、批次大小、訓練輪數等。通過在特定數據集上的訓練,模型能夠學習到文本對之間的語義關係,從而實現文本重排序和語義搜索的功能。
📄 許可證
本模型使用Apache-2.0許可證。
📖 引用
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
Jina Embeddings V3
Jina Embeddings V3 是一個多語言句子嵌入模型,支持超過100種語言,專注於句子相似度和特徵提取任務。
文本嵌入
Transformers 支持多種語言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基於MS Marco段落排序任務訓練的交叉編碼器模型,用於信息檢索中的查詢-段落相關性評分
文本嵌入 英語
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基於蒸餾技術的稀疏檢索模型,專為OpenSearch優化,支持免推理文檔編碼,在搜索相關性和效率上優於V1版本
文本嵌入
Transformers 英語

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基於PubMedBERT的生物醫學實體表徵模型,通過自對齊預訓練優化語義關係捕捉
文本嵌入 英語
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一個強大的句子轉換器模型,專注於句子相似度和文本嵌入任務,在多個基準測試中表現出色。
文本嵌入 英語
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一個英文句子轉換器模型,專注於句子相似度任務,在多個文本嵌入基準測試中表現優異。
文本嵌入
Transformers 支持多種語言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一個多語言的句子嵌入模型,支持超過50種語言,適用於句子相似度計算等任務。
文本嵌入
Transformers 支持多種語言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一個化學語言模型,旨在實現完全由機器驅動的超快聚合物信息學。它將PSMILES字符串映射為600維密集指紋,以數值形式表示聚合物化學結構。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基於土耳其語BERT的句子嵌入模型,專為語義相似度任務優化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基於BAAI/bge-small-en-v1.5模型微調的文本嵌入模型,通過MEDI數據集與MTEB分類任務數據集訓練,優化了檢索任務的查詢編碼能力。
文本嵌入
Safetensors 英語
G
avsolatorio
945.68k
29
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98