Unixcoder Base
UniXcoder是一個統一的多模態預訓練模型,利用代碼註釋和抽象語法樹等多模態數據預訓練代碼表示。
下載量 347.45k
發布時間 : 3/23/2022
模型概述
UniXcoder是一個基於RoBERTa的多模態預訓練模型,專門用於代碼表示學習,支持多種代碼相關任務。
模型特點
多模態預訓練
利用代碼註釋和抽象語法樹等多模態數據進行預訓練,增強代碼表示能力
多任務支持
支持編碼器、解碼器以及編碼器-解碼器三種模式,適應不同代碼相關任務
零樣本學習
無需微調即可在多種代碼相關任務上表現良好
模型能力
代碼搜索
代碼補全
函數名預測
API推薦
代碼摘要
使用案例
代碼理解
代碼搜索
根據自然語言查詢搜索相關代碼片段
能準確區分語義相近但功能不同的代碼
代碼生成
代碼補全
根據上下文自動補全代碼
能生成符合上下文的合理代碼
代碼文檔
函數名預測
根據函數體預測合適的函數名
能預測語義準確的函數名
代碼摘要
為代碼片段生成自然語言描述
能生成簡潔準確的代碼描述
🚀 UniXcoder-base 模型卡片
UniXcoder 是一個統一的跨模態預訓練模型,它利用多模態數據(即代碼註釋和抽象語法樹)來預訓練代碼表示,為代碼相關任務提供了強大的支持。
🚀 快速開始
依賴安裝
使用以下命令安裝所需依賴:
pip install torch
pip install transformers
快速上手
我們實現了一個類來使用 UniXcoder,你可以按照以下代碼構建 UniXcoder。首先,下載該類:
wget https://raw.githubusercontent.com/microsoft/CodeBERT/master/UniXcoder/unixcoder.py
import torch
from unixcoder import UniXcoder
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = UniXcoder("microsoft/unixcoder-base")
model.to(device)
接下來,我們將給出幾個不同模式下的零樣本示例,包括代碼搜索(僅編碼器)、代碼補全(僅解碼器)、函數名預測(編碼器 - 解碼器)、API 推薦(編碼器 - 解碼器)、代碼摘要(編碼器 - 解碼器)。
✨ 主要特性
僅編碼器模式
代碼和自然語言嵌入
以下是一個從 CodeBERT 獲取代碼片段嵌入的示例:
# Encode maximum function
func = "def f(a,b): if a>b: return a else return b"
tokens_ids = model.tokenize([func],max_length=512,mode="<encoder-only>")
source_ids = torch.tensor(tokens_ids).to(device)
tokens_embeddings,max_func_embedding = model(source_ids)
# Encode minimum function
func = "def f(a,b): if a<b: return a else return b"
tokens_ids = model.tokenize([func],max_length=512,mode="<encoder-only>")
source_ids = torch.tensor(tokens_ids).to(device)
tokens_embeddings,min_func_embedding = model(source_ids)
# Encode NL
nl = "return maximum value"
tokens_ids = model.tokenize([nl],max_length=512,mode="<encoder-only>")
source_ids = torch.tensor(tokens_ids).to(device)
tokens_embeddings,nl_embedding = model(source_ids)
print(max_func_embedding.shape)
print(max_func_embedding)
torch.Size([1, 768])
tensor([[ 8.6533e-01, -1.9796e+00, -8.6849e-01, 4.2652e-01, -5.3696e-01,
-1.5521e-01, 5.3770e-01, 3.4199e-01, 3.6305e-01, -3.9391e-01,
-1.1816e+00, 2.6010e+00, -7.7133e-01, 1.8441e+00, 2.3645e+00,
...,
-2.9188e+00, 1.2555e+00, -1.9953e+00, -1.9795e+00, 1.7279e+00,
6.4590e-01, -5.2769e-02, 2.4965e-01, 2.3962e-02, 5.9996e-02,
2.5659e+00, 3.6533e+00, 2.0301e+00]], device='cuda:0',
grad_fn=<DivBackward0>)
代碼和自然語言的相似度
現在,我們計算自然語言和兩個函數之間的餘弦相似度。儘管兩個函數的差異僅在於一個運算符(<
和 >
),但 UniXcoder 可以區分它們。
# Normalize embedding
norm_max_func_embedding = torch.nn.functional.normalize(max_func_embedding, p=2, dim=1)
norm_min_func_embedding = torch.nn.functional.normalize(min_func_embedding, p=2, dim=1)
norm_nl_embedding = torch.nn.functional.normalize(nl_embedding, p=2, dim=1)
max_func_nl_similarity = torch.einsum("ac,bc->ab",norm_max_func_embedding,norm_nl_embedding)
min_func_nl_similarity = torch.einsum("ac,bc->ab",norm_min_func_embedding,norm_nl_embedding)
print(max_func_nl_similarity)
print(min_func_nl_similarity)
tensor([[0.3002]], device='cuda:0', grad_fn=<ViewBackward>)
tensor([[0.1881]], device='cuda:0', grad_fn=<ViewBackward>)
僅解碼器模式
以下是一個代碼補全的示例:
context = """
def f(data,file_path):
# write json data into file_path in python language
"""
tokens_ids = model.tokenize([context],max_length=512,mode="<decoder-only>")
source_ids = torch.tensor(tokens_ids).to(device)
prediction_ids = model.generate(source_ids, decoder_only=True, beam_size=3, max_length=128)
predictions = model.decode(prediction_ids)
print(context+predictions[0][0])
def f(data,file_path):
# write json data into file_path in python language
data = json.dumps(data)
with open(file_path, 'w') as f:
f.write(data)
編碼器 - 解碼器模式
函數名預測
context = """
def <mask0>(data,file_path):
data = json.dumps(data)
with open(file_path, 'w') as f:
f.write(data)
"""
tokens_ids = model.tokenize([context],max_length=512,mode="<encoder-decoder>")
source_ids = torch.tensor(tokens_ids).to(device)
prediction_ids = model.generate(source_ids, decoder_only=False, beam_size=3, max_length=128)
predictions = model.decode(prediction_ids)
print([x.replace("<mask0>","").strip() for x in predictions[0]])
['write_json', 'write_file', 'to_json']
API 推薦
context = """
def write_json(data,file_path):
data = <mask0>(data)
with open(file_path, 'w') as f:
f.write(data)
"""
tokens_ids = model.tokenize([context],max_length=512,mode="<encoder-decoder>")
source_ids = torch.tensor(tokens_ids).to(device)
prediction_ids = model.generate(source_ids, decoder_only=False, beam_size=3, max_length=128)
predictions = model.decode(prediction_ids)
print([x.replace("<mask0>","").strip() for x in predictions[0]])
['json.dumps', 'json.loads', 'str']
代碼摘要
context = """
# <mask0>
def write_json(data,file_path):
data = json.dumps(data)
with open(file_path, 'w') as f:
f.write(data)
"""
tokens_ids = model.tokenize([context],max_length=512,mode="<encoder-decoder>")
source_ids = torch.tensor(tokens_ids).to(device)
prediction_ids = model.generate(source_ids, decoder_only=False, beam_size=3, max_length=128)
predictions = model.decode(prediction_ids)
print([x.replace("<mask0>","").strip() for x in predictions[0]])
['Write JSON to file', 'Write json to file', 'Write a json file']
📚 詳細文檔
模型詳情
屬性 | 詳情 |
---|---|
開發團隊 | 微軟團隊 |
共享方 | Hugging Face |
模型類型 | 特徵工程 |
語言 | 英語 |
許可證 | Apache - 2.0 |
相關模型 | 父模型:RoBERTa |
更多信息資源 | 關聯論文 |
📄 許可證
本模型使用 Apache - 2.0 許可證。
🔗 引用
如果您使用此代碼或 UniXcoder,請考慮引用我們:
@article{guo2022unixcoder,
title={UniXcoder: Unified Cross-Modal Pre-training for Code Representation},
author={Guo, Daya and Lu, Shuai and Duan, Nan and Wang, Yanlin and Zhou, Ming and Yin, Jian},
journal={arXiv preprint arXiv:2203.03850},
year={2022}
}
Codebert Base
CodeBERT是一個面向編程語言與自然語言的預訓練模型,基於RoBERTa架構,支持代碼搜索和代碼生成文檔等功能。
多模態融合
C
microsoft
1.6M
248
Llama 4 Scout 17B 16E Instruct
其他
Llama 4 Scout是Meta開發的多模態AI模型,採用混合專家架構,支持12種語言的文本和圖像交互,具有17B激活參數和109B總參數。
多模態融合
Transformers 支持多種語言

L
meta-llama
817.62k
844
Unixcoder Base
Apache-2.0
UniXcoder是一個統一的多模態預訓練模型,利用代碼註釋和抽象語法樹等多模態數據預訓練代碼表示。
多模態融合
Transformers 英語

U
microsoft
347.45k
51
TITAN
TITAN是一個多模態全切片基礎模型,通過視覺自監督學習和視覺-語言對齊進行預訓練,用於病理學圖像分析。
多模態融合
Safetensors 英語
T
MahmoodLab
213.39k
37
Qwen2.5 Omni 7B
其他
Qwen2.5-Omni 是一個端到端的多模態模型,能夠感知文本、圖像、音頻和視頻等多種模態,並以流式方式生成文本和自然語音響應。
多模態融合
Transformers 英語

Q
Qwen
206.20k
1,522
Minicpm O 2 6
MiniCPM-o 2.6是一款手機端運行的GPT-4o級多模態大模型,支持視覺、語音與直播流處理
多模態融合
Transformers 其他

M
openbmb
178.38k
1,117
Llama 4 Scout 17B 16E Instruct
其他
Llama 4 Scout是Meta推出的17B參數/16專家混合的多模態AI模型,支持12種語言和圖像理解,具有行業領先性能。
多模態融合
Transformers 支持多種語言

L
chutesai
173.52k
2
Qwen2.5 Omni 3B
其他
Qwen2.5-Omni是一款端到端多模態模型,能夠感知文本、圖像、音頻和視頻等多種模態信息,並以流式方式同步生成文本和自然語音響應。
多模態融合
Transformers 英語

Q
Qwen
48.07k
219
One Align
MIT
Q-Align是一個多任務視覺評估模型,專注於圖像質量評估(IQA)、美學評估(IAA)和視頻質量評估(VQA),在ICML2024上發表。
多模態融合
Transformers

O
q-future
39.48k
25
Biomedvlp BioViL T
MIT
BioViL-T是一個專注於分析胸部X光片和放射學報告的視覺語言模型,通過時序多模態預訓練提升性能。
多模態融合
Transformers 英語

B
microsoft
26.39k
35
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98