🚀 SapBERT-PubMedBERT
SapBERT是一個用於生物醫學實體表示的預訓練模型,通過自對齊預訓練方案,能夠有效捕捉生物醫學領域的細粒度語義關係,在多個醫學實體鏈接基準數據集上取得了最先進的成果。
🚀 快速開始
模型信息
SapBERT由Liu et al. (2020)提出。該模型使用UMLS 2020AA(僅英文)進行訓練,以microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext為基礎模型。請使用輸出的均值池化作為表示。
模型新聞
- [新聞] SapBERT的跨語言擴展版本將在ACL 2021主會議上亮相!
- [新聞] SapBERT將出現在NAACL 2021的會議論文集中!
💻 使用示例
基礎用法
以下腳本將字符串列表(實體名稱)轉換為嵌入向量:
import numpy as np
import torch
from tqdm.auto import tqdm
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("cambridgeltl/SapBERT-from-PubMedBERT-fulltext-mean-token")
model = AutoModel.from_pretrained("cambridgeltl/SapBERT-from-PubMedBERT-fulltext-mean-token").cuda()
all_names = ["covid-19", "Coronavirus infection", "high fever", "Tumor of posterior wall of oropharynx"]
bs = 128
all_embs = []
for i in tqdm(np.arange(0, len(all_names), bs)):
toks = tokenizer.batch_encode_plus(all_names[i:i+bs],
padding="max_length",
max_length=25,
truncation=True,
return_tensors="pt")
toks_cuda = {}
for k,v in toks.items():
toks_cuda[k] = v.cuda()
cls_rep = model(**toks_cuda)[0].mean(1)
all_embs.append(cls_rep.cpu().detach().numpy())
all_embs = np.concatenate(all_embs, axis=0)
更多詳情
有關訓練和評估的更多詳細信息,請參閱SapBERT GitHub倉庫。
📄 許可證
引用信息
如果您使用了該模型,請引用以下論文:
@inproceedings{liu-etal-2021-self,
title = "Self-Alignment Pretraining for Biomedical Entity Representations",
author = "Liu, Fangyu and
Shareghi, Ehsan and
Meng, Zaiqiao and
Basaldella, Marco and
Collier, Nigel",
booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
month = jun,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2021.naacl-main.334",
pages = "4228--4238",
abstract = "Despite the widespread success of self-supervised learning via masked language models (MLM), accurately capturing fine-grained semantic relationships in the biomedical domain remains a challenge. This is of paramount importance for entity-level tasks such as entity linking where the ability to model entity relations (especially synonymy) is pivotal. To address this challenge, we propose SapBERT, a pretraining scheme that self-aligns the representation space of biomedical entities. We design a scalable metric learning framework that can leverage UMLS, a massive collection of biomedical ontologies with 4M+ concepts. In contrast with previous pipeline-based hybrid systems, SapBERT offers an elegant one-model-for-all solution to the problem of medical entity linking (MEL), achieving a new state-of-the-art (SOTA) on six MEL benchmarking datasets. In the scientific domain, we achieve SOTA even without task-specific supervision. With substantial improvement over various domain-specific pretrained MLMs such as BioBERT, SciBERTand and PubMedBERT, our pretraining scheme proves to be both effective and robust.",
}