模型概述
模型特點
模型能力
使用案例
🚀 CosyVoice
CosyVoice是一個文本轉語音的工具,提供了多種模型和資源,支持零樣本、跨語言、SFT和指令推理等多種模式,還提供了Web演示和高級使用腳本。
🚀 快速開始
你可以通過以下鏈接查看CosyVoice的演示、論文、工作室和代碼:
如果你想了解 SenseVoice
,請訪問 SenseVoice repo 和 SenseVoice space。
📦 安裝指南
克隆並安裝
- 克隆倉庫:
git clone --recursive https://github.com/FunAudioLLM/CosyVoice.git
# 如果由於網絡問題克隆子模塊失敗,請運行以下命令直到成功
cd CosyVoice
git submodule update --init --recursive
- 安裝Conda:請參考 https://docs.conda.io/en/latest/miniconda.html。
- 創建Conda環境:
conda create -n cosyvoice python=3.8
conda activate cosyvoice
# pynini是WeTextProcessing所需的,使用conda安裝,因為它可以在所有平臺上執行。
conda install -y -c conda-forge pynini==2.1.5
pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com
# 如果你遇到sox兼容性問題
# ubuntu
sudo apt-get install sox libsox-dev
# centos
sudo yum install sox sox-devel
模型下載
強烈建議你下載預訓練的 CosyVoice-300M
、CosyVoice-300M-SFT
、CosyVoice-300M-Instruct
模型和 CosyVoice-ttsfrd
資源。如果你是該領域的專家,並且只想從頭開始訓練自己的CosyVoice模型,可以跳過此步驟。
# SDK模型下載
from modelscope import snapshot_download
snapshot_download('iic/CosyVoice-300M', local_dir='pretrained_models/CosyVoice-300M')
snapshot_download('iic/CosyVoice-300M-SFT', local_dir='pretrained_models/CosyVoice-300M-SFT')
snapshot_download('iic/CosyVoice-300M-Instruct', local_dir='pretrained_models/CosyVoice-300M-Instruct')
snapshot_download('iic/CosyVoice-ttsfrd', local_dir='pretrained_models/CosyVoice-ttsfrd')
# git模型下載,請確保已安裝git lfs
mkdir -p pretrained_models
git clone https://www.modelscope.cn/iic/CosyVoice-300M.git pretrained_models/CosyVoice-300M
git clone https://www.modelscope.cn/iic/CosyVoice-300M-SFT.git pretrained_models/CosyVoice-300M-SFT
git clone https://www.modelscope.cn/iic/CosyVoice-300M-Instruct.git pretrained_models/CosyVoice-300M-Instruct
git clone https://www.modelscope.cn/iic/CosyVoice-ttsfrd.git pretrained_models/CosyVoice-ttsfrd
你可以選擇解壓 ttsfrd
資源並安裝 ttsfrd
包,以獲得更好的文本規範化性能。注意,此步驟不是必需的。如果你不安裝 ttsfrd
包,我們將默認使用WeTextProcessing。
cd pretrained_models/CosyVoice-ttsfrd/
unzip resource.zip -d .
pip install ttsfrd-0.3.6-cp38-cp38-linux_x86_64.whl
💻 使用示例
基礎用法
- 零樣本/跨語言推理,請使用
CosyVoice-300M
模型。 - SFT推理,請使用
CosyVoice-300M-SFT
模型。 - 指令推理,請使用
CosyVoice-300M-Instruct
模型。
首先,將 third_party/Matcha-TTS
添加到你的 PYTHONPATH
中。
export PYTHONPATH=third_party/Matcha-TTS
from cosyvoice.cli.cosyvoice import CosyVoice
from cosyvoice.utils.file_utils import load_wav
import torchaudio
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M-SFT')
# sft usage
print(cosyvoice.list_avaliable_spks())
# change stream=True for chunk stream inference
for i, j in enumerate(cosyvoice.inference_sft('你好,我是通義生成式語音大模型,請問有什麼可以幫您的嗎?', '中文女', stream=False)):
torchaudio.save('sft_{}.wav'.format(i), j['tts_speech'], 22050)
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M')
# zero_shot usage, <|zh|><|en|><|jp|><|yue|><|ko|> for Chinese/English/Japanese/Cantonese/Korean
prompt_speech_16k = load_wav('zero_shot_prompt.wav', 16000)
for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友從遠方寄來的生日禮物,那份意外的驚喜與深深的祝福讓我心中充滿了甜蜜的快樂,笑容如花兒般綻放。', '希望你以後能夠做的比我還好呦。', prompt_speech_16k, stream=False)):
torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], 22050)
# cross_lingual usage
prompt_speech_16k = load_wav('cross_lingual_prompt.wav', 16000)
for i, j in enumerate(cosyvoice.inference_cross_lingual('<|en|>And then later on, fully acquiring that company. So keeping management in line, interest in line with the asset that\'s coming into the family is a reason why sometimes we don\'t buy the whole thing.', prompt_speech_16k, stream=False)):
torchaudio.save('cross_lingual_{}.wav'.format(i), j['tts_speech'], 22050)
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M-Instruct')
# instruct usage, support <laughter></laughter><strong></strong>[laughter][breath]
for i, j in enumerate(cosyvoice.inference_instruct('在面對挑戰時,他展現了非凡的<strong>勇氣</strong>與<strong>智慧</strong>。', '中文男', 'Theo \'Crimson\', is a fiery, passionate rebel leader. Fights with fervor for justice, but struggles with impulsiveness.', stream=False)):
torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], 22050)
啟動Web演示
你可以使用我們的Web演示頁面快速熟悉CosyVoice。我們在Web演示中支持SFT、零樣本、跨語言和指令推理。詳情請查看演示網站。
# 更改iic/CosyVoice-300M-SFT用於SFT推理,或iic/CosyVoice-300M-Instruct用於指令推理
python3 webui.py --port 50000 --model_dir pretrained_models/CosyVoice-300M
高級用法
對於高級用戶,我們在 examples/libritts/cosyvoice/run.sh
中提供了訓練和推理腳本。你可以按照這個指南熟悉CosyVoice。
構建部署
如果你想使用gRPC進行服務部署,可以執行以下步驟。否則,你可以忽略此步驟。
cd runtime/python
docker build -t cosyvoice:v1.0 .
# 如果你想使用指令推理,將iic/CosyVoice-300M更改為iic/CosyVoice-300M-Instruct
# for grpc usage
docker run -d --runtime=nvidia -p 50000:50000 cosyvoice:v1.0 /bin/bash -c "cd /opt/CosyVoice/CosyVoice/runtime/python/grpc && python3 server.py --port 50000 --max_conc 4 --model_dir iic/CosyVoice-300M && sleep infinity"
cd grpc && python3 client.py --port 50000 --mode <sft|zero_shot|cross_lingual|instruct>
# for fastapi usage
docker run -d --runtime=nvidia -p 50000:50000 cosyvoice:v1.0 /bin/bash -c "cd /opt/CosyVoice/CosyVoice/runtime/python/fastapi && MODEL_DIR=iic/CosyVoice-300M fastapi dev --port 50000 server.py && sleep infinity"
cd fastapi && python3 client.py --port 50000 --mode <sft|zero_shot|cross_lingual|instruct>
📚 詳細文檔
討論與交流
你可以直接在 Github Issues 上進行討論。你也可以掃描二維碼加入我們的官方釘釘聊天群。
致謝
我們借鑑了以下項目的許多代碼:
免責聲明
上述內容僅用於學術目的,旨在展示技術能力。部分示例來源於互聯網。如果任何內容侵犯了你的權益,請聯繫我們要求刪除。




