🚀 tags - allnli - GroNLP - bert - base - dutch - cased
這是一個句子轉換器模型,它能將句子和段落映射到一個768維的密集向量空間,可用於聚類或語義搜索等任務。
🚀 快速開始
本模型可通過兩種方式使用,分別是使用sentence - transformers
庫和直接使用HuggingFace Transformers
庫。下面為你詳細介紹。
📦 安裝指南
若要使用sentence - transformers
庫,你需要先安裝它:
pip install -U sentence-transformers
💻 使用示例
基礎用法(Sentence - Transformers)
使用sentence - transformers
庫時,你可以這樣使用該模型:
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
高級用法(HuggingFace Transformers)
若不使用sentence - transformers
庫,你可以按以下步驟使用模型:首先,將輸入傳遞給Transformer模型,然後對上下文詞嵌入應用正確的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained(textgain/tags-allnli-GroNLP-bert-base-dutch-cased)
model = AutoModel.from_pretrained(textgain/tags-allnli-GroNLP-bert-base-dutch-cased)
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 詳細文檔
評估結果
若要對該模型進行自動化評估,請參考句子嵌入基準測試:https://seb.sbert.net
訓練信息
該模型使用以下參數進行訓練:
數據加載器
sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader
,長度為4687,參數如下:
{'batch_size': 128}
損失函數
sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss
,參數如下:
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
fit()方法的參數
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 5e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": 3000,
"warmup_steps": 300.0,
"weight_decay": 0.01
}
完整模型架構
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
BibTeX引用
@inproceedings{kosar-etal-2023-advancing,
title = "Advancing Topical Text Classification: A Novel Distance-Based Method with Contextual Embeddings",
author = "Kosar, Andriy and
De Pauw, Guy and
Daelemans, Walter",
editor = "Mitkov, Ruslan and
Angelova, Galia",
booktitle = "Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing",
month = sep,
year = "2023",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd., Shoumen, Bulgaria",
url = "https://aclanthology.org/2023.ranlp-1.64",
pages = "586--597",
}
其他信息
屬性 |
詳情 |
管道標籤 |
句子相似度 |
標籤 |
句子轉換器、特徵提取、句子相似度、轉換器 |
語言 |
荷蘭語 |
小部件示例
源句子:“In Spanje en Portugal zijn dit weekend door branden duizenden hectares bos verwoest, meldt persbureau DPA. In het westen van Portugal was volgens de autoriteiten vanochtend 6200 hectare afgebrand.”
候選句子:
- "kunst, cultuur, entertainment en media"
- "conflict, oorlog en vrede"
- "misdaad, recht en gerechtigheid"
- "rampen, ongevallen en noodgevallen"
- "economie, handel en financiën"
- "onderwijs"
- "milieu"
- "gezondheid"
- "menselijke interesse"
- "arbeid"
- "levensstijl en vrije tijd"
- "politiek"
- "religie en geloof"
- "wetenschap en technologie"
- "maatschappij"
- "sport"
- "weer"
示例標題:“IPTC媒體主題”