🚀 e5-base-mlqa-finetuned-arabic-for-rag
這是一個 sentence-transformers 模型,它可以將句子和段落映射到一個 768 維的密集向量空間,可用於聚類或語義搜索等任務。
🚀 快速開始
安裝依賴
使用這個模型前,你需要安裝 sentence-transformers:
pip install -U sentence-transformers
使用示例
基礎用法
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('OmarAlsaabi/e5-base-mlqa-finetuned-arabic-for-rag')
embeddings = model.encode(sentences)
print(embeddings)
📚 詳細文檔
評估結果
若要對該模型進行自動化評估,請參考 Sentence Embeddings Benchmark:https://seb.sbert.net
訓練參數
該模型的訓練參數如下:
數據加載器
torch.utils.data.dataloader.DataLoader
,長度為 2668,參數如下:
{'batch_size': 2, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
損失函數
sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss
,參數如下:
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
fit() 方法的參數
{
"epochs": 2,
"evaluation_steps": 50,
"evaluator": "sentence_transformers.evaluation.InformationRetrievalEvaluator.InformationRetrievalEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 533,
"weight_decay": 0.01
}
完整模型架構
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
(2): Normalize()
)
引用與作者
如果你想了解更多信息,請參考相關內容。