Bge M3 Financial Matryoshka
基於BAAI/bge-m3微調的金融領域句子嵌入模型,支持1024維向量表示,適用於語義相似度和信息檢索任務
下載量 34
發布時間 : 6/22/2024
模型概述
這是一個基於sentence-transformers框架的金融領域專用模型,能夠將文本映射到高維向量空間,主要用於語義文本相似度計算、信息檢索等任務。模型在金融文本上進行了優化,特別適合處理財務報告、商業文檔等專業內容。
模型特點
金融領域優化
針對金融文本進行專門微調,在處理財務報告、商業文檔等專業內容時表現更優
高維向量表示
支持1024維的密集向量表示,能夠捕捉更豐富的語義信息
多維度評估
模型在多個維度(1024/768/512/384)上都進行了評估,確保不同場景下的性能
長文本支持
最大序列長度達8192個標記,適合處理較長的金融文檔
模型能力
語義文本相似度計算
語義搜索
複述挖掘
文本分類
文本聚類
金融文檔分析
使用案例
金融文檔處理
財務報告檢索
從大量財務報告中快速找到與查詢問題最相關的段落
在測試集上達到71.7%的準確率@1
監管文檔分析
分析監管文件中特定條款的相關內容
在測試集上達到83.1%的準確率@3
商業智能
商業報告相似度分析
比較不同商業報告中的相似內容
🚀 BGE-M3 Financial Matryoshka
BGE-M3 Financial Matryoshka 是一個基於 sentence-transformers 框架,從 BAAI/bge-m3 微調而來的模型。它能夠將句子和段落映射到一個 1024 維的密集向量空間,可用於語義文本相似度計算、語義搜索、釋義挖掘、文本分類、聚類等多種自然語言處理任務。
🚀 快速開始
安裝依賴庫
首先,你需要安裝 sentence-transformers
庫:
pip install -U sentence-transformers
加載模型並進行推理
安裝完成後,你可以加載該模型並進行推理:
from sentence_transformers import SentenceTransformer
# 從 🤗 Hub 下載模型
model = SentenceTransformer("haophancs/bge-m3-financial-matryoshka")
# 進行推理
sentences = [
'As of January 28, 2024 the net carrying value of our inventories was $1.3 billion, which included provisions for obsolete and damaged inventory of $139.7 million.',
"What is the status of the company's inventory as of January 28, 2024, in terms of its valuation and provisions for obsolescence?",
'What is the relationship between the ESG goals and the long - term growth strategy?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# 獲取嵌入向量的相似度分數
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
✨ 主要特性
- 多任務適用性:可用於語義文本相似度計算、語義搜索、釋義挖掘、文本分類、聚類等多種自然語言處理任務。
- 高維向量表示:能夠將句子和段落映射到 1024 維的密集向量空間,更好地捕捉語義信息。
- 長序列處理:最大序列長度可達 8192 個標記,適合處理較長的文本。
📦 安裝指南
安裝 sentence-transformers
庫即可使用該模型:
pip install -U sentence-transformers
💻 使用示例
基礎用法
from sentence_transformers import SentenceTransformer
# 從 🤗 Hub 下載模型
model = SentenceTransformer("haophancs/bge-m3-financial-matryoshka")
# 進行推理
sentences = [
'As of January 28, 2024 the net carrying value of our inventories was $1.3 billion, which included provisions for obsolete and damaged inventory of $139.7 million.',
"What is the status of the company's inventory as of January 28, 2024, in terms of its valuation and provisions for obsolescence?",
'What is the relationship between the ESG goals and the long - term growth strategy?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# 獲取嵌入向量的相似度分數
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
📚 詳細文檔
模型詳情
模型描述
屬性 | 詳情 |
---|---|
模型類型 | 句子轉換器(Sentence Transformer) |
基礎模型 | BAAI/bge-m3 |
最大序列長度 | 8192 個標記 |
輸出維度 | 1024 個標記 |
相似度函數 | 餘弦相似度(Cosine Similarity) |
語言 | 英語(en) |
許可證 | apache-2.0 |
模型來源
- 文檔:Sentence Transformers Documentation
- 代碼倉庫:Sentence Transformers on GitHub
- Hugging Face:Sentence Transformers on Hugging Face
完整模型架構
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
評估
信息檢索指標
以下是在不同數據集上的評估指標:
dim_1024
數據集
指標 | 值 |
---|---|
cosine_accuracy@1 | 0.7171 |
cosine_accuracy@3 | 0.8314 |
cosine_accuracy@5 | 0.87 |
cosine_accuracy@10 | 0.9143 |
cosine_precision@1 | 0.7171 |
cosine_precision@3 | 0.2771 |
cosine_precision@5 | 0.174 |
cosine_precision@10 | 0.0914 |
cosine_recall@1 | 0.7171 |
cosine_recall@3 | 0.8314 |
cosine_recall@5 | 0.87 |
cosine_recall@10 | 0.9143 |
cosine_ndcg@10 | 0.8152 |
cosine_mrr@10 | 0.7836 |
cosine_map@100 | 0.7867 |
dim_768
數據集
指標 | 值 |
---|---|
cosine_accuracy@1 | 0.7129 |
cosine_accuracy@3 | 0.8343 |
cosine_accuracy@5 | 0.8657 |
cosine_accuracy@10 | 0.91 |
cosine_precision@1 | 0.7129 |
cosine_precision@3 | 0.2781 |
cosine_precision@5 | 0.1731 |
cosine_precision@10 | 0.091 |
cosine_recall@1 | 0.7129 |
cosine_recall@3 | 0.8343 |
cosine_recall@5 | 0.8657 |
cosine_recall@10 | 0.91 |
cosine_ndcg@10 | 0.8122 |
cosine_mrr@10 | 0.7809 |
cosine_map@100 | 0.7843 |
dim_512
數據集
指標 | 值 |
---|---|
cosine_accuracy@1 | 0.7114 |
cosine_accuracy@3 | 0.8357 |
cosine_accuracy@5 | 0.8643 |
cosine_accuracy@10 | 0.91 |
cosine_precision@1 | 0.7114 |
cosine_precision@3 | 0.2786 |
cosine_precision@5 | 0.1729 |
cosine_precision@10 | 0.091 |
cosine_recall@1 | 0.7114 |
cosine_recall@3 | 0.8357 |
cosine_recall@5 | 0.8643 |
cosine_recall@10 | 0.91 |
cosine_ndcg@10 | 0.811 |
cosine_mrr@10 | 0.7793 |
cosine_map@100 | 0.7827 |
dim_384
數據集
指標 | 值 |
---|---|
cosine_accuracy@1 | 0.7143 |
cosine_accuracy@3 | 0.8329 |
cosine_accuracy@5 | 0.8629 |
cosine_accuracy@10 | 0.9129 |
cosine_precision@1 | 0.7143 |
cosine_precision@3 | 0.2776 |
cosine_precision@5 | 0.1726 |
cosine_precision@10 | 0.0913 |
cosine_recall@1 | 0.7143 |
cosine_recall@3 | 0.8329 |
cosine_recall@5 | 0.8629 |
cosine_recall@10 | 0.9129 |
cosine_ndcg@10 | 0.8126 |
cosine_mrr@10 | 0.7806 |
cosine_map@100 | 0.7838 |
訓練詳情
訓練數據集
- 未命名數據集
- 數據規模:6300 個訓練樣本
- 數據列:
<code>positive</code>
和<code>anchor</code>
- 近似統計信息(基於前 1000 個樣本):
positive anchor 類型 字符串 字符串 詳情 - 最小:11 個標記
- 平均:51.97 個標記
- 最大:1146 個標記
- 最小:7 個標記
- 平均:21.63 個標記
- 最大:47 個標記
- 樣本示例:
positive anchor From fiscal year 2022 to 2023, the cost of revenue as a percentage of total net revenue decreased by 3 percent.
What was the percentage change in cost of revenue as a percentage of total net revenue from fiscal year 2022 to 2023?
•Operating income increased $321 million, or 2%, to $18.1 billion versus year ago due to the increase in net sales, partially offset by a modest decrease in operating margin.
What factors contributed to the increase in operating income for Procter & Gamble in 2023?
market specific brands including 'Aurrera,' 'Lider,' and 'PhonePe.'
What specific brands does Walmart International market?
- 損失函數:
MatryoshkaLoss
,參數如下:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 1024, 768, 512, 384 ], "matryoshka_weights": [ 1, 1, 1, 1 ], "n_dims_per_step": -1 }
訓練超參數
- 非默認超參數:
eval_strategy
: epochper_device_train_batch_size
: 4per_device_eval_batch_size
: 2gradient_accumulation_steps
: 2learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
框架版本
- Python: 3.12.2
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.2.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
🔧 技術細節
訓練日誌
點擊展開
輪次 | 步數 | 訓練損失 | dim_1024_cosine_map@100 | dim_384_cosine_map@100 | dim_512_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|---|
0.0127 | 10 | 0.2059 | - | - | - | - |
0.0254 | 20 | 0.2612 | - | - | - | - |
0.0381 | 30 | 0.0873 | - | - | - | - |
0.0508 | 40 | 0.1352 | - | - | - | - |
0.0635 | 50 | 0.156 | - | - | - | - |
0.0762 | 60 | 0.0407 | - | - | - | - |
0.0889 | 70 | 0.09 | - | - | - | - |
0.1016 | 80 | 0.027 | - | - | - | - |
0.1143 | 90 | 0.0978 | - | - | - | - |
0.1270 | 100 | 0.0105 | - | - | - | - |
0.1397 | 110 | 0.0402 | - | - | - | - |
0.1524 | 120 | 0.0745 | - | - | - | - |
0.1651 | 130 | 0.0655 | - | - | - | - |
0.1778 | 140 | 0.0075 | - | - | - | - |
0.1905 | 150 | 0.0141 | - | - | - | - |
0.2032 | 160 | 0.0615 | - | - | - | - |
0.2159 | 170 | 0.0029 | - | - | - | - |
0.2286 | 180 | 0.0269 | - | - | - | - |
0.2413 | 190 | 0.0724 | - | - | - | - |
0.2540 | 200 | 0.0218 | - | - | - | - |
0.2667 | 210 | 0.0027 | - | - | - | - |
0.2794 | 220 | 0.007 | - | - | - | - |
0.2921 | 230 | 0.0814 | - | - | - | - |
0.3048 | 240 | 0.0326 | - | - | - | - |
0.3175 | 250 | 0.0061 | - | - | - | - |
0.3302 | 260 | 0.0471 | - | - | - | - |
0.3429 | 270 | 0.0115 | - | - | - | - |
0.3556 | 280 | 0.0021 | - | - | - | - |
0.3683 | 290 | 0.0975 | - | - | - | - |
0.3810 | 300 | 0.0572 | - | - | - | - |
0.3937 | 310 | 0.0125 | - | - | - | - |
0.4063 | 320 | 0.04 | - | - | - | - |
0.4190 | 330 | 0.0023 | - | - | - | - |
0.4317 | 340 | 0.0121 | - | - | - | - |
0.4444 | 350 | 0.0116 | - | - | - | - |
0.4571 | 360 | 0.0059 | - | - | - | - |
0.4698 | 370 | 0.0217 | - | - | - | - |
0.4825 | 380 | 0.0294 | - | - | - | - |
0.4952 | 390 | 0.1102 | - | - | - | - |
0.5079 | 400 | 0.0103 | - | - | - | - |
0.5206 | 410 | 0.0023 | - | - | - | - |
0.5333 | 420 | 0.0157 | - | - | - | - |
0.5460 | 430 | 0.0805 | - | - | - | - |
0.5587 | 440 | 0.0168 | - | - | - | - |
0.5714 | 450 | 0.1279 | - | - | - | - |
0.5841 | 460 | 0.2012 | - | - | - | - |
0.5968 | 470 | 0.0436 | - | - | - | - |
0.6095 | 480 | 0.0204 | - | - | - | - |
0.6222 | 490 | 0.0097 | - | - | - | - |
0.6349 | 500 | 0.0013 | - | - | - | - |
0.6476 | 510 | 0.0042 | - | - | - | - |
0.6603 | 520 | 0.0034 | - | - | - | - |
0.6730 | 530 | 0.0226 | - | - | - | - |
0.6857 | 540 | 0.0267 | - | - | - | - |
0.6984 | 550 | 0.0007 | - | - | - | - |
0.7111 | 560 | 0.0766 | - | - | - | - |
0.7238 | 570 | 0.2174 | - | - | - | - |
0.7365 | 580 | 0.0089 | - | - | - | - |
0.7492 | 590 | 0.0794 | - | - | - | - |
0.7619 | 600 | 0.0031 | - | - | - | - |
0.7746 | 610 | 0.0499 | - | - | - | - |
0.7873 | 620 | 0.0105 | - | - | - | - |
0.8 | 630 | 0.0097 | - | - | - | - |
0.8127 | 640 | 0.0028 | - | - | - | - |
0.8254 | 650 | 0.0029 | - | - | - | - |
0.8381 | 660 | 0.1811 | - | - | - | - |
0.8508 | 670 | 0.064 | - | - | - | - |
0.8635 | 680 | 0.0139 | - | - | - | - |
0.8762 | 690 | 0.055 | - | - | - | - |
0.8889 | 700 | 0.0013 | - | - | - | - |
0.9016 | 710 | 0.0402 | - | - | - | - |
0.9143 | 720 | 0.0824 | - | - | - | - |
0.9270 | 730 | 0.03 | - | - | - | - |
0.9397 | 740 | 0.0337 | - | - | - | - |
0.9524 | 750 | 0.1192 | - | - | - | - |
0.9651 | 760 | 0.0039 | - | - | - | - |
0.9778 | 770 | 0.004 | - | - | - | - |
0.9905 | 780 | 0.1413 | - | - | - | - |
0.9994 | 787 | - | 0.7851 | 0.7794 | 0.7822 | 0.7863 |
1.0032 | 790 | 0.019 | - | - | - | - |
1.0159 | 800 | 0.0587 | - | - | - | - |
1.0286 | 810 | 0.0186 | - | - | - | - |
1.0413 | 820 | 0.0018 | - | - | - | - |
1.0540 | 830 | 0.0631 | - | - | - | - |
1.0667 | 840 | 0.0127 | - | - | - | - |
1.0794 | 850 | 0.0037 | - | - | - | - |
1.0921 | 860 | 0.0029 | - | - | - | - |
1.1048 | 870 | 0.1437 | - | - | - | - |
1.1175 | 880 | 0.0015 | - | - | - | - |
1.1302 | 890 | 0.0024 | - | - | - | - |
1.1429 | 900 | 0.0133 | - | - | - | - |
1.1556 | 910 | 0.0245 | - | - | - | - |
1.1683 | 920 | 0.0017 | - | - | - | - |
1.1810 | 930 | 0.0007 | - | - | - | - |
1.1937 | 940 | 0.002 | - | - | - | - |
1.2063 | 950 | 0.0044 | - | - | - | - |
1.2190 | 960 | 0.0009 | - | - | - | - |
1.2317 | 970 | 0.01 | - | - | - | - |
1.2444 | 980 | 0.0026 | - | - | - | - |
1.2571 | 990 | 0.0017 | - | - | - | - |
1.2698 | 1000 | 0.0014 | - | - | - | - |
1.2825 | 1010 | 0.0009 | - | - | - | - |
1.2952 | 1020 | 0.0829 | - | - | - | - |
1.3079 | 1030 | 0.0011 | - | - | - | - |
1.3206 | 1040 | 0.012 | - | - | - | - |
1.3333 | 1050 | 0.0019 | - | - | - | - |
1.3460 | 1060 | 0.0007 | - | - | - | - |
1.3587 | 1070 | 0.0141 | - | - | - | - |
1.3714 | 1080 | 0.0003 | - | - | - | - |
1.3841 | 1090 | 0.001 | - | - | - | - |
1.3968 | 1100 | 0.0005 | - | - | - | - |
1.4095 | 1110 | 0.0031 | - | - | - | - |
1.4222 | 1120 | 0.0004 | - | - | - | - |
1.4349 | 1130 | 0.0054 | - | - | - | - |
1.4476 | 1140 | 0.0003 | - | - | - | - |
1.4603 | 1150 | 0.0007 | - | - | - | - |
1.4730 | 1160 | 0.0009 | - | - | - | - |
1.4857 | 1170 | 0.001 | - | - | - | - |
1.4984 | 1180 | 0.0006 | - | - | - | - |
1.5111 | 1190 | 0.0046 | - | - | - | - |
1.5238 | 1200 | 0.0003 | - | - | - | - |
1.5365 | 1210 | 0.0002 | - | - | - | - |
1.5492 | 1220 | 0.004 | - | - | - | - |
1.5619 | 1230 | 0.0017 | - | - | - | - |
1.5746 | 1240 | 0.0003 | - | - | - | - |
1.5873 | 1250 | 0.0027 | - | - | - | - |
1.6 | 1260 | 0.1134 | - | - | - | - |
1.6127 | 1270 | 0.0007 | - | - | - | - |
1.6254 | 1280 | 0.0005 | - | - | - | - |
1.6381 | 1290 | 0.0008 | - | - | - | - |
1.6508 | 1300 | 0.0001 | - | - | - | - |
1.6635 | 1310 | 0.0023 | - | - | - | - |
1.6762 | 1320 | 0.0005 | - | - | - | - |
1.6889 | 1330 | 0.0004 | - | - | - | - |
1.7016 | 1340 | 0.0003 | - | - | - | - |
1.7143 | 1350 | 0.0347 | - | - | - | - |
1.7270 | 1360 | 0.0339 | - | - | - | - |
1.7397 | 1370 | 0.0003 | - | - | - | - |
1.7524 | 1380 | 0.0005 | - | - | - | - |
1.7651 | 1390 | 0.0002 | - | - | - | - |
1.7778 | 1400 | 0.0031 | - | - | - | - |
1.7905 | 1410 | 0.0002 | - | - | - | - |
1.8032 | 1420 | 0.0012 | - | - | - | - |
1.8159 | 1430 | 0.0002 | - | - | - | - |
1.8286 | 1440 | 0.0002 | - | - | - | - |
1.8413 | 1450 | 0.0004 | - | - | - | - |
1.8540 | 1460 | 0.011 | - | - | - | - |
1.8667 | 1470 | 0.0824 | - | - | - | - |
1.8794 | 1480 | 0.0003 | - | - | - | - |
1.8921 | 1490 | 0.0004 | - | - | - | - |
1.9048 | 1500 | 0.0006 | - | - | - | - |
1.9175 | 1510 | 0.015 | - | - | - | - |
1.9302 | 1520 | 0.0004 | - | - | - | - |
1.9429 | 1530 | 0.0004 | - | - | - | - |
1.9556 | 1540 | 0.0011 | - | - | - | - |
1.9683 | 1550 | 0.0003 | - | - | - | - |
1.9810 | 1560 | 0.0006 | - | - | - | - |
1.9937 | 1570 | 0.0042 | - | - | - | - |
2.0 | 1575 | - | 0.7862 | 0.7855 | 0.7852 | 0.7878 |
2.0063 | 1580 | 0.0005 | - | - | - | - |
2.0190 | 1590 | 0.002 | - | - | - | - |
2.0317 | 1600 | 0.0013 | - | - | - | - |
2.0444 | 1610 | 0.0002 | - | - | - | - |
2.0571 | 1620 | 0.0035 | - | - | - | - |
2.0698 | 1630 | 0.0004 | - | - | - | - |
2.0825 | 1640 | 0.0002 | - | - | - | - |
2.0952 | 1650 | 0.0032 | - | - | - | - |
2.1079 | 1660 | 0.0916 | - | - | - | - |
2.1206 | 1670 | 0.0002 | - | - | - | - |
2.1333 | 1680 | 0.0006 | - | - | - | - |
2.1460 | 1690 | 0.0002 | - | - | - | - |
2.1587 | 1700 | 0.0003 | - | - | - | - |
2.1714 | 1710 | 0.0001 | - | - | - | - |
2.1841 | 1720 | 0.0001 | - | - | - | - |
2.1968 | 1730 | 0.0004 | - | - | - | - |
2.2095 | 1740 | 0.0004 | - | - | - | - |
2.2222 | 1750 | 0.0001 | - | - | - | - |
2.2349 | 1760 | 0.0002 | - | - | - | - |
2.2476 | 1770 | 0.0007 | - | - | - | - |
2.2603 | 1780 | 0.0001 | - | - | - | - |
2.2730 | 1790 | 0.0002 | - | - | - | - |
2.2857 | 1800 | 0.0004 | - | - | - | - |
2.2984 | 1810 | 0.0711 | - | - | - | - |
2.3111 | 1820 | 0.0001 | - | - | - | - |
2.3238 | 1830 | 0.0005 | - | - | - | - |
2.3365 | 1840 | 0.0004 | - | - | - | - |
2.3492 | 1850 | 0.0001 | - | - | - | - |
2.3619 | 1860 | 0.0005 | - | - | - | - |
2.3746 | 1870 | 0.0003 | - | - | - | - |
2.3873 | 1880 | 0.0001 | - | - | - | - |
2.4 | 1890 | 0.0002 | - | - | - | - |
2.4127 | 1900 | 0.0001 | - | - | - | - |
2.4254 | 1910 | 0.0002 | - | - | - | - |
2.4381 | 1920 | 0.0002 | - | - | - | - |
2.4508 | 1930 | 0.0002 | - | - | - | - |
2.4635 | 1940 | 0.0004 | - | - | - | - |
2.4762 | 1950 | 0.0001 | - | - | - | - |
2.4889 | 1960 | 0.0002 | - | - | - | - |
2.5016 | 1970 | 0.0002 | - | - | - | - |
2.5143 | 1980 | 0.0001 | - | - | - | - |
2.5270 | 1990 | 0.0001 | - | - | - | - |
2.5397 | 2000 | 0.0002 | - | - | - | - |
2.5524 | 2010 | 0.0023 | - | - | - | - |
2.5651 | 2020 | 0.0002 | - | - | - | - |
2.5778 | 2030 | 0.0001 | - | - | - | - |
2.5905 | 2040 | 0.0003 | - | - | - | - |
2.6032 | 2050 | 0.0003 | - | - | - | - |
2.6159 | 2060 | 0.0002 | - | - | - | - |
2.6286 | 2070 | 0.0001 | - | - | - | - |
2.6413 | 2080 | 0.0 | - | - | - | - |
2.6540 | 2090 | 0.0001 | - | - | - | - |
2.6667 | 2100 | 0.0001 | - | - | - | - |
2.6794 | 2110 | 0.0001 | - | - | - | - |
2.6921 | 2120 | 0.0001 | - | - | - | - |
2.7048 | 2130 | 0.0001 | - | - | - | - |
2.7175 | 2140 | 0.0048 | - | - | - | - |
2.7302 | 2150 | 0.0005 | - | - | - | - |
2.7429 | 2160 | 0.0001 | - | - | - | - |
2.7556 | 2170 | 0.0001 | - | - | - | - |
2.7683 | 2180 | 0.0001 | - | - | - | - |
2.7810 | 2190 | 0.0001 | - | - | - | - |
2.7937 | 2200 | 0.0001 | - | - | - | - |
2.8063 | 2210 | 0.0001 | - | - | - | - |
2.8190 | 2220 | 0.0001 | - | - | - | - |
2.8317 | 2230 | 0.0002 | - | - | - | - |
2.8444 | 2240 | 0.0036 | - | - | - | - |
2.8571 | 2250 | 0.0001 | - | - | - | - |
2.8698 | 2260 | 0.0368 | - | - | - | - |
2.8825 | 2270 | 0.0003 | - | - | - | - |
2.8952 | 2280 | 0.0002 | - | - | - | - |
2.9079 | 2290 | 0.0001 | - | - | - | - |
2.9206 | 2300 | 0.0005 | - | - | - | - |
2.9333 | 2310 | 0.0001 | - | - | - | - |
2.9460 | 2320 | 0.0001 | - | - | - | - |
2.9587 | 2330 | 0.0003 | - | - | - | - |
2.9714 | 2340 | 0.0001 | - | - | - | - |
2.9841 | 2350 | 0.0001 | - | - | - | - |
2.9968 | 2360 | 0.0002 | - | - | - | - |
2.9994 | 2362 | - | 0.7864 | 0.7805 | 0.7838 | 0.7852 |
3.0095 | 2370 | 0.0025 | - | - | - | - |
3.0222 | 2380 | 0.0002 | - | - | - | - |
3.0349 | 2390 | 0.0001 | - | - | - | - |
3.0476 | 2400 | 0.0001 | - | - | - | - |
3.0603 | 2410 | 0.0001 | - | - | - | - |
3.0730 | 2420 | 0.0001 | - | - | - | - |
3.0857 | 2430 | 0.0001 | - | - | - | - |
3.0984 | 2440 | 0.0002 | - | - | - | - |
3.1111 | 2450 | 0.0116 | - | - | - | - |
3.1238 | 2460 | 0.0002 | - | - | - | - |
3.1365 | 2470 | 0.0001 | - | - | - | - |
3.1492 | 2480 | 0.0001 | - | - | - | - |
3.1619 | 2490 | 0.0001 | - | - | - | - |
3.1746 | 2500 | 0.0001 | - | - | - | - |
3.1873 | 2510 | 0.0001 | - | - | - | - |
3.2 | 2520 | 0.0001 | - | - | - | - |
3.2127 | 2530 | 0.0001 | - | - | - | - |
3.2254 | 2540 | 0.0001 | - | - | - | - |
3.2381 | 2550 | 0.0002 | - | - | - | - |
3.2508 | 2560 | 0.0001 | - | - | - | - |
3.2635 | 2570 | 0.0001 | - | - | - | - |
3.2762 | 2580 | 0.0001 | - | - | - | - |
3.2889 | 2590 | 0.0001 | - | - | - | - |
3.3016 | 2600 | 0.063 | - | - | - | - |
3.3143 | 2610 | 0.0001 | - | - | - | - |
3.3270 | 2620 | 0.0001 | - | - | - | - |
3.3397 | 2630 | 0.0001 | - | - | - | - |
3.3524 | 2640 | 0.0001 | - | - | - | - |
3.3651 | 2650 | 0.0002 | - | - | - | - |
3.3778 | 2660 | 0.0001 | - | - | - | - |
3.3905 | 2670 | 0.0001 | - | - | - | - |
3.4032 | 2680 | 0.0001 | - | - | - | - |
3.4159 | 2690 | 0.0001 | - | - | - | - |
3.4286 | 2700 | 0.0001 | - | - | - | - |
3.4413 | 2710 | 0.0001 | - | - | - | - |
3.4540 | 2720 | 0.0002 | - | - | - | - |
3.4667 | 2730 | 0.0001 | - | - | - | - |
3.4794 | 2740 | 0.0001 | - | - | - | - |
3.4921 | 2750 | 0.0001 | - | - | - | - |
3.5048 | 2760 | 0.0001 | - | - | - | - |
3.5175 | 2770 | 0.0002 | - | - | - | - |
3.5302 | 2780 | 0.0001 | - | - | - | - |
3.5429 | 2790 | 0.0001 | - | - | - | - |
3.5556 | 2800 | 0.0001 | - | - | - | - |
3.5683 | 2810 | 0.0001 | - | - | - | - |
3.5810 | 2820 | 0.0001 | - | - | - | - |
3.5937 | 2830 | 0.0001 | - | - | - | - |
3.6063 | 2840 | 0.0001 | - | - | - | - |
3.6190 | 2850 | 0.0 | - | - | - | - |
3.6317 | 2860 | 0.0001 | - | - | - | - |
3.6444 | 2870 | 0.0001 | - | - | - | - |
3.6571 | 2880 | 0.0001 | - | - | - | - |
3.6698 | 2890 | 0.0001 | - | - | - | - |
3.6825 | 2900 | 0.0001 | - | - | - | - |
3.6952 | 2910 | 0.0001 | - | - | - | - |
3.7079 | 2920 | 0.0001 | - | - | - | - |
3.7206 | 2930 | 0.0003 | - | - | - | - |
3.7333 | 2940 | 0.0001 | - | - | - | - |
3.7460 | 2950 | 0.0001 | - | - | - | - |
3.7587 | 2960 | 0.0001 | - | - | - | - |
3.7714 | 2970 | 0.0002 | - | - | - | - |
3.7841 | 2980 | 0.0001 | - | - | - | - |
3.7968 | 2990 | 0.0001 | - | - | - | - |
3.8095 | 3000 | 0.0001 | - | - | - | - |
3.8222 | 3010 | 0.0001 | - | - | - | - |
3.8349 | 3020 | 0.0002 | - | - | - | - |
3.8476 | 3030 | 0.0001 | - | - | - | - |
3.8603 | 3040 | 0.0001 | - | - | - | - |
3.8730 | 3050 | 0.0214 | - | - | - | - |
3.8857 | 3060 | 0.0001 | - | - | - | - |
3.8984 | 3070 | 0.0001 | - | - | - | - |
3.9111 | 3080 | 0.0001 | - | - | - | - |
3.9238 | 3090 | 0.0001 | - | - | - | - |
3.9365 | 3100 | 0.0001 | - | - | - | - |
3.9492 | 3110 | 0.0001 | - | - | - | - |
3.9619 | 3120 | 0.0001 | - | - | - | - |
3.9746 | 3130 | 0.0001 | - | - | - | - |
3.9873 | 3140 | 0.0001 | - | - | - | - |
3.9975 | 3148 | - | 0.7867 | 0.7838 | 0.7827 | 0.7843 |
- 加粗行表示保存的檢查點。
📄 許可證
本模型使用 apache-2.0 許可證。
📚 引用
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Jina Embeddings V3
Jina Embeddings V3 是一個多語言句子嵌入模型,支持超過100種語言,專注於句子相似度和特徵提取任務。
文本嵌入
Transformers 支持多種語言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基於MS Marco段落排序任務訓練的交叉編碼器模型,用於信息檢索中的查詢-段落相關性評分
文本嵌入 英語
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基於蒸餾技術的稀疏檢索模型,專為OpenSearch優化,支持免推理文檔編碼,在搜索相關性和效率上優於V1版本
文本嵌入
Transformers 英語

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基於PubMedBERT的生物醫學實體表徵模型,通過自對齊預訓練優化語義關係捕捉
文本嵌入 英語
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一個強大的句子轉換器模型,專注於句子相似度和文本嵌入任務,在多個基準測試中表現出色。
文本嵌入 英語
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一個英文句子轉換器模型,專注於句子相似度任務,在多個文本嵌入基準測試中表現優異。
文本嵌入
Transformers 支持多種語言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一個多語言的句子嵌入模型,支持超過50種語言,適用於句子相似度計算等任務。
文本嵌入
Transformers 支持多種語言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一個化學語言模型,旨在實現完全由機器驅動的超快聚合物信息學。它將PSMILES字符串映射為600維密集指紋,以數值形式表示聚合物化學結構。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基於土耳其語BERT的句子嵌入模型,專為語義相似度任務優化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基於BAAI/bge-small-en-v1.5模型微調的文本嵌入模型,通過MEDI數據集與MTEB分類任務數據集訓練,優化了檢索任務的查詢編碼能力。
文本嵌入
Safetensors 英語
G
avsolatorio
945.68k
29
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98