Halong Embedding
專注於RAG(檢索增強生成)和生產效率的越南語文本嵌入模型,基於intfloat/multilingual-e5-base微調
下載量 7,651
發布時間 : 7/6/2024
模型概述
Halong Embedding是一款基於intfloat/multilingual-e5-base微調的sentence-transformers模型,專注于越南語文本嵌入,支持語義文本相似度、語義搜索、複述挖掘、文本分類、聚類等任務。
模型特點
Matryoshka嵌入
採用Matryoshka損失函數訓練,允許截斷嵌入向量而性能損失最小,提供更快的比較速度。
多語言支持
以越南語為主,同時支持多語言處理。
高效檢索
專注於RAG(檢索增強生成)和生產效率,優化了信息檢索性能。
模型能力
語義文本相似度計算
語義搜索
複述挖掘
文本分類
聚類分析
使用案例
信息檢索
法律文檔檢索
在Zalo法律檢索數據集上評估模型性能,用於快速查找相關法律文檔。
準確率@1達到0.8294,準確率@10達到0.9687
健康領域問答
健康益處查詢
檢索與健康益處相關的足球信息。
相關文檔按餘弦相似度排序,最高相似度0.7318
🚀 下龍嵌入模型(Halong Embedding)
下龍嵌入模型(Halong Embedding)是一款專注於檢索增強生成(RAG)和生產效率的越南語文本嵌入模型。它能將句子和段落映射到768維的密集向量空間,可用於語義文本相似度計算、語義搜索、釋義挖掘、文本分類、聚類等任務。
- 📚 該模型基於約100,000個問題及相關文檔的內部數據集進行訓練。
- 🪆 採用套娃損失(Matryoshka loss)進行訓練,允許在性能損失最小的情況下截斷嵌入向量,較小的嵌入向量比較起來更快。
這是一個基於 sentence-transformers 庫,從 intfloat/multilingual-e5-base 微調而來的模型。你可以在 這裡 找到評估和微調腳本,也可以查看我的 研討會視頻。
🚀 快速開始
安裝依賴
首先,你需要安裝 sentence-transformers
庫:
pip install -U sentence-transformers
運行推理
以下是使用該模型進行推理的示例代碼:
from sentence_transformers import SentenceTransformer
import torch
# 從 🤗 Hub 下載模型
model = SentenceTransformer("hiieu/halong_embedding")
# 定義查詢語句和文檔
query = "Bóng đá có lợi ích gì cho sức khỏe?"
docs = [
"Bóng đá giúp cải thiện sức khỏe tim mạch và tăng cường sức bền.",
"Bóng đá là môn thể thao phổ biến nhất thế giới.",
"Chơi bóng đá giúp giảm căng thẳng và cải thiện tâm lý.",
"Bóng đá có thể giúp bạn kết nối với nhiều người hơn.",
"Bóng đá không chỉ là môn thể thao mà còn là cách để giải trí."
]
# 對查詢語句和文檔進行編碼
query_embedding = model.encode([query])
doc_embeddings = model.encode(docs)
similarities = model.similarity(query_embedding, doc_embeddings).flatten()
# 根據餘弦相似度對文檔進行排序
sorted_indices = torch.argsort(similarities, descending=True)
sorted_docs = [docs[idx] for idx in sorted_indices]
sorted_scores = [similarities[idx].item() for idx in sorted_indices]
# 打印排序後的文檔及其餘弦相似度得分
for doc, score in zip(sorted_docs, sorted_scores):
print(f"Document: {doc} - Cosine Similarity: {score:.4f}")
# Document: Bóng đá giúp cải thiện sức khỏe tim mạch và tăng cường sức bền. - Cosine Similarity: 0.7318
# Document: Chơi bóng đá giúp giảm căng thẳng và cải thiện tâm lý. - Cosine Similarity: 0.6623
# Document: Bóng đá không chỉ là môn thể thao mà còn là cách để giải trí. - Cosine Similarity: 0.6102
# Document: Bóng đá có thể giúp bạn kết nối với nhiều người hơn. - Cosine Similarity: 0.4988
# Document: Bóng đá là môn thể thao phổ biến nhất thế giới. - Cosine Similarity: 0.4828
套娃嵌入推理
from sentence_transformers import SentenceTransformer
import torch.nn.functional as F
import torch
matryoshka_dim = 64
model = SentenceTransformer(
"hiieu/halong_embedding",
truncate_dim=matryoshka_dim,
)
# 定義查詢語句和文檔
query = "Bóng đá có lợi ích gì cho sức khỏe?"
docs = [
"Bóng đá giúp cải thiện sức khỏe tim mạch và tăng cường sức bền.",
"Bóng đá là môn thể thao phổ biến nhất thế giới.",
"Chơi bóng đá giúp giảm căng thẳng và cải thiện tâm lý.",
"Bóng đá có thể giúp bạn kết nối với nhiều người hơn.",
"Bóng đá không chỉ là môn thể thao mà còn là cách để giải trí."
]
# 對查詢語句和文檔進行編碼
query_embedding = model.encode([query])
doc_embeddings = model.encode(docs)
similarities = model.similarity(query_embedding, doc_embeddings).flatten()
# 根據餘弦相似度對文檔進行排序
sorted_indices = torch.argsort(similarities, descending=True)
sorted_docs = [docs[idx] for idx in sorted_indices]
sorted_scores = [similarities[idx].item() for idx in sorted_indices]
# 打印排序後的文檔及其餘弦相似度得分
for doc, score in zip(sorted_docs, sorted_scores):
print(f"Document: {doc} - Cosine Similarity: {score:.4f}")
# Document: Bóng đá giúp cải thiện sức khỏe tim mạch và tăng cường sức bền. - Cosine Similarity: 0.8045
# Document: Chơi bóng đá giúp giảm căng thẳng và cải thiện tâm lý. - Cosine Similarity: 0.7676
# Document: Bóng đá không chỉ là môn thể thao mà còn là cách để giải trí. - Cosine Similarity: 0.6758
# Document: Bóng đá có thể giúp bạn kết nối với nhiều người hơn. - Cosine Similarity: 0.5931
# Document: Bóng đá là môn thể thao phổ biến nhất thế giới. - Cosine Similarity: 0.5105
✨ 主要特性
- 專注越南語:該模型專注于越南語文本嵌入,在越南語相關任務上表現出色。
- 高效訓練:使用內部約100,000個問題及相關文檔的數據集進行訓練,保證了模型的質量。
- 靈活嵌入:採用套娃損失(Matryoshka loss)訓練,可截斷嵌入向量,在性能損失最小的情況下提高比較速度。
- 多用途:可用於語義文本相似度計算、語義搜索、釋義挖掘、文本分類、聚類等多種任務。
📦 安裝指南
要使用該模型,你需要安裝 sentence-transformers
庫:
pip install -U sentence-transformers
📚 詳細文檔
模型詳情
模型描述
屬性 | 詳情 |
---|---|
模型類型 | 句子轉換器(Sentence Transformer) |
基礎模型 | intfloat/multilingual-e5-base |
最大序列長度 | 512 個標記 |
輸出維度 | 768 個標記 |
相似度函數 | 餘弦相似度 |
語言 | 以越南語為主,支持多語言 |
許可證 | apache-2.0 |
模型來源
- 文檔:Sentence Transformers 文檔
- 倉庫:GitHub 上的 Sentence Transformers
- Hugging Face:Hugging Face 上的 Sentence Transformers
完整模型架構
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
評估
指標
信息檢索
- 數據集:Zalo legal retrieval dataet
- 注意:我們對 Zalo Legal 訓練數據集的 20% 進行了採樣以進行快速測試;我們的模型未在該數據集上進行訓練。
- 使用
InformationRetrievalEvaluator
進行評估。
模型 | Accuracy@1 | Accuracy@3 | Accuracy@5 | Accuracy@10 | Precision@1 | Precision@3 | Precision@5 | Precision@10 | Recall@1 | Recall@3 | Recall@5 | Recall@10 | NDCG@10 | MRR@10 | MAP@100 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
vietnamese-bi-encoder | 0.8169 | 0.9108 | 0.9437 | 0.9640 | 0.8169 | 0.3099 | 0.1931 | 0.0987 | 0.8020 | 0.9045 | 0.9390 | 0.9601 | 0.8882 | 0.8685 | 0.8652 |
sup-SimCSE-VietNamese-phobert-base | 0.5540 | 0.7308 | 0.7981 | 0.8748 | 0.5540 | 0.2473 | 0.1621 | 0.0892 | 0.5446 | 0.7246 | 0.7903 | 0.8693 | 0.7068 | 0.6587 | 0.6592 |
halong_embedding (768) | 0.8294 | 0.9233 | 0.9437 | 0.9687 | 0.8294 | 0.3146 | 0.1931 | 0.0991 | 0.8146 | 0.9178 | 0.9390 | 0.9640 | 0.8976 | 0.8799 | 0.8763 |
halong_embedding (512) | 0.8138 | 0.9233 | 0.9390 | 0.9703 | 0.8138 | 0.3146 | 0.1922 | 0.0992 | 0.7989 | 0.9178 | 0.9343 | 0.9656 | 0.8917 | 0.8715 | 0.8678 |
halong_embedding (256) | 0.7934 | 0.8967 | 0.9280 | 0.9593 | 0.7934 | 0.3062 | 0.1900 | 0.0981 | 0.7786 | 0.8920 | 0.9233 | 0.9546 | 0.8743 | 0.8520 | 0.8489 |
halong_embedding (128) | 0.7840 | 0.8951 | 0.9264 | 0.9515 | 0.7840 | 0.3046 | 0.1894 | 0.0975 | 0.7707 | 0.8889 | 0.9210 | 0.9476 | 0.8669 | 0.8439 | 0.8412 |
halong_embedding (64) | 0.6980 | 0.8435 | 0.8920 | 0.9358 | 0.6980 | 0.2864 | 0.1815 | 0.0958 | 0.6854 | 0.8365 | 0.8842 | 0.9311 | 0.8145 | 0.7805 | 0.7775 |
📄 許可證
本項目採用 apache-2.0 許可證。
📝 引用
你可以按以下方式引用我們的工作:
@misc{HalongEmbedding,
title={HalongEmbedding: A Vietnamese Text Embedding},
author={Ngo Hieu},
year={2024},
publisher={Huggingface},
}
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Jina Embeddings V3
Jina Embeddings V3 是一個多語言句子嵌入模型,支持超過100種語言,專注於句子相似度和特徵提取任務。
文本嵌入
Transformers 支持多種語言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基於MS Marco段落排序任務訓練的交叉編碼器模型,用於信息檢索中的查詢-段落相關性評分
文本嵌入 英語
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基於蒸餾技術的稀疏檢索模型,專為OpenSearch優化,支持免推理文檔編碼,在搜索相關性和效率上優於V1版本
文本嵌入
Transformers 英語

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基於PubMedBERT的生物醫學實體表徵模型,通過自對齊預訓練優化語義關係捕捉
文本嵌入 英語
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一個強大的句子轉換器模型,專注於句子相似度和文本嵌入任務,在多個基準測試中表現出色。
文本嵌入 英語
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一個英文句子轉換器模型,專注於句子相似度任務,在多個文本嵌入基準測試中表現優異。
文本嵌入
Transformers 支持多種語言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一個多語言的句子嵌入模型,支持超過50種語言,適用於句子相似度計算等任務。
文本嵌入
Transformers 支持多種語言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一個化學語言模型,旨在實現完全由機器驅動的超快聚合物信息學。它將PSMILES字符串映射為600維密集指紋,以數值形式表示聚合物化學結構。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基於土耳其語BERT的句子嵌入模型,專為語義相似度任務優化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基於BAAI/bge-small-en-v1.5模型微調的文本嵌入模型,通過MEDI數據集與MTEB分類任務數據集訓練,優化了檢索任務的查詢編碼能力。
文本嵌入
Safetensors 英語
G
avsolatorio
945.68k
29
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98