All MiniLM L6 V2 Course Recommendation
這是一個從sentence-transformers/all-MiniLM-L6-v2微調而來的句子轉換器模型,能將文本映射到384維向量空間,用於語義相似度計算等任務。
下載量 26
發布時間 : 2/27/2025
模型概述
該模型專門用於將句子和段落轉換為384維的密集向量表示,支持語義文本相似度、語義搜索、文本分類和聚類等自然語言處理任務。
模型特點
高效向量表示
將文本轉換為384維的密集向量,保留語義信息
語義相似度計算
通過餘弦相似度準確衡量句子間的語義相關性
輕量級模型
基於MiniLM架構,在保持性能的同時減少計算資源需求
對比學習訓練
使用對比損失函數優化模型,增強語義區分能力
模型能力
語義文本相似度計算
語義搜索
複述挖掘
文本分類
文本聚類
使用案例
信息檢索
文檔相似性搜索
在文檔庫中查找語義相似的文檔
提高搜索結果的相關性
內容管理
重複內容檢測
識別不同表述但含義相同的內容
減少內容冗餘
推薦系統
相關內容推薦
基於語義相似度推薦相關內容
提升用戶體驗
🚀 基於sentence-transformers/all-MiniLM-L6-v2的句子轉換器模型
本項目基於 sentence-transformers 框架,從 sentence-transformers/all-MiniLM-L6-v2 模型微調而來。該模型可將句子和段落映射到384維的密集向量空間,適用於語義文本相似度計算、語義搜索、釋義挖掘、文本分類、聚類等多種任務。
✨ 主要特性
- 語義理解能力強:能夠精準捕捉句子和段落的語義信息,將其轉化為384維的密集向量。
- 應用場景廣泛:可用於語義文本相似度計算、語義搜索、釋義挖掘、文本分類、聚類等。
- 微調靈活:基於
sentence-transformers/all-MiniLM-L6-v2
模型微調,可根據具體需求進行定製化訓練。
📦 安裝指南
首先,你需要安裝 sentence-transformers
庫:
pip install -U sentence-transformers
💻 使用示例
基礎用法
from sentence_transformers import SentenceTransformer
# 從🤗 Hub下載模型
model = SentenceTransformer("sentence_transformers_model_id")
# 進行推理
sentences = [
'Mathematics for Machine Learning: PCA',
'Cybersecurity',
'General',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# 獲取嵌入向量的相似度得分
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
📚 詳細文檔
模型詳情
模型描述
屬性 | 詳情 |
---|---|
模型類型 | 句子轉換器(Sentence Transformer) |
基礎模型 | sentence-transformers/all-MiniLM-L6-v2 |
最大序列長度 | 256個詞元 |
輸出維度 | 384維 |
相似度函數 | 餘弦相似度(Cosine Similarity) |
模型來源
- 文檔:Sentence Transformers Documentation
- 倉庫:Sentence Transformers on GitHub
- Hugging Face:Sentence Transformers on Hugging Face
完整模型架構
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
訓練詳情
訓練數據集
未命名數據集
- 規模:1424個訓練樣本
- 列信息:包含
sentence_0
、sentence_1
和label
三列 - 近似統計信息(基於前1000個樣本):
sentence_0 sentence_1 label 類型 字符串 字符串 整數 詳情 - 最小:3個詞元
- 平均:8.99個詞元
- 最大:41個詞元
- 最小:3個詞元
- 平均:3.41個詞元
- 最大:6個詞元
- 0:約49.70%
- 1:約50.30%
- 樣本示例:
sentence_0 sentence_1 label Biostatistics in Public Health
Statistics
1
Vital Signs: Understanding What the Body Is Telling Us
Data Science
0
Camino a la Excelencia en Gestión de Proyectos
Cybersecurity
0
- 損失函數:
ContrastiveLoss
,參數如下:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true }
訓練超參數
非默認超參數
per_device_train_batch_size
:16per_device_eval_batch_size
:16multi_dataset_batch_sampler
:round_robin
所有超參數
點擊展開
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
框架版本
- Python:3.12.7
- Sentence Transformers:3.4.1
- Transformers:4.49.0
- PyTorch:2.5.1+cu124
- Accelerate:1.3.0
- Datasets:3.2.0
- Tokenizers:0.21.0
📄 許可證
文檔中未提及許可證相關信息。
🔧 技術細節
引用信息
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
ContrastiveLoss
@inproceedings{hadsell2006dimensionality,
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
title={Dimensionality Reduction by Learning an Invariant Mapping},
year={2006},
volume={2},
number={},
pages={1735-1742},
doi={10.1109/CVPR.2006.100}
}
Jina Embeddings V3
Jina Embeddings V3 是一個多語言句子嵌入模型,支持超過100種語言,專注於句子相似度和特徵提取任務。
文本嵌入
Transformers 支持多種語言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基於MS Marco段落排序任務訓練的交叉編碼器模型,用於信息檢索中的查詢-段落相關性評分
文本嵌入 英語
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基於蒸餾技術的稀疏檢索模型,專為OpenSearch優化,支持免推理文檔編碼,在搜索相關性和效率上優於V1版本
文本嵌入
Transformers 英語

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基於PubMedBERT的生物醫學實體表徵模型,通過自對齊預訓練優化語義關係捕捉
文本嵌入 英語
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一個強大的句子轉換器模型,專注於句子相似度和文本嵌入任務,在多個基準測試中表現出色。
文本嵌入 英語
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一個英文句子轉換器模型,專注於句子相似度任務,在多個文本嵌入基準測試中表現優異。
文本嵌入
Transformers 支持多種語言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一個多語言的句子嵌入模型,支持超過50種語言,適用於句子相似度計算等任務。
文本嵌入
Transformers 支持多種語言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一個化學語言模型,旨在實現完全由機器驅動的超快聚合物信息學。它將PSMILES字符串映射為600維密集指紋,以數值形式表示聚合物化學結構。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基於土耳其語BERT的句子嵌入模型,專為語義相似度任務優化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基於BAAI/bge-small-en-v1.5模型微調的文本嵌入模型,通過MEDI數據集與MTEB分類任務數據集訓練,優化了檢索任務的查詢編碼能力。
文本嵌入
Safetensors 英語
G
avsolatorio
945.68k
29
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98