Snoweu V2
S
Snoweu V2
由fjavigv開發
基於Snowflake Arctic架構的句子嵌入模型,專注於句子相似度計算和特徵提取
下載量 604
發布時間 : 3/19/2025
模型概述
該模型是一個句子轉換器,專門用於計算句子之間的相似度和提取句子特徵。它採用套娃損失和多重負樣本排序損失進行訓練,適用於信息檢索、語義搜索等任務。
模型特點
高效句子嵌入
能夠將句子轉換為高維向量表示,便於相似度計算和語義分析
多重損失函數
採用套娃損失和多重負樣本排序損失進行訓練,提高模型性能
大規模訓練數據
基於29,911條數據訓練,具有較強的泛化能力
模型能力
句子相似度計算
語義特徵提取
信息檢索
語義搜索
文本匹配
使用案例
信息檢索
文檔相似性搜索
在大量文檔中查找與查詢句子最相似的文檔
在測試中達到0.98的準確率@10
商業分析
商業策略匹配
識別與特定商業策略相關的文檔段落
🚀 基於Snowflake/snowflake-arctic-embed-m-v1.5的句子轉換器
這是一個基於 sentence-transformers 框架,從 Snowflake/snowflake-arctic-embed-m-v1.5 微調而來的模型。它可以將句子和段落映射到一個768維的密集向量空間,可用於語義文本相似度計算、語義搜索、釋義挖掘、文本分類、聚類等任務。
🚀 快速開始
安裝依賴庫
首先,你需要安裝 sentence-transformers
庫:
pip install -U sentence-transformers
加載模型並進行推理
from sentence_transformers import SentenceTransformer
# 從🤗 Hub下載模型
model = SentenceTransformer("sentence_transformers_model_id")
# 進行推理
sentences = [
'What is the definition of a preliminary economic assessment in the context of evaluating projects for the recovery of critical raw materials?',
'(39)\n\n‘preliminary economic assessment’ means an early-stage, conceptual assessment of the potential economic viability of a project for the recovery of critical raw materials from extractive waste;\n\n(40)\n\n‘magnetic resonance imaging device’ means a non-invasive medical device that uses magnetic fields to make anatomical images or any other device that uses magnetic fields to make images of the inside of object;\n\n(41)\n\n‘wind energy generator’ means the part of an onshore or offshore wind turbine that converts the mechanical energy of the rotor into electrical energy;\n\n(42)',
'For the purposes of the first subparagraph of this paragraph, insurance undertakings referred to in point (a) of the first subparagraph of Article 1(3) of this Directive that are part of a group, on the basis of financial relationships referred to in point (c)(ii) of Article 212(1) of Directive 2009/138/EC, and which are subject to group supervision in accordance with points (a) to (c) of Article 213(2) of that Directive shall be treated as subsidiary undertakings of the parent undertaking of that group.\n\n9.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# 獲取嵌入向量的相似度得分
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
✨ 主要特性
- 多任務支持:可用於語義文本相似度計算、語義搜索、釋義挖掘、文本分類、聚類等多種自然語言處理任務。
- 高維向量表示:將句子和段落映射到768維的密集向量空間,便於進行語義分析。
- 微調模型:基於
Snowflake/snowflake-arctic-embed-m-v1.5
進行微調,能更好地適應特定任務。
📦 安裝指南
安裝 sentence-transformers
庫:
pip install -U sentence-transformers
💻 使用示例
基礎用法
from sentence_transformers import SentenceTransformer
# 從🤗 Hub下載模型
model = SentenceTransformer("sentence_transformers_model_id")
# 進行推理
sentences = [
'What is the definition of a preliminary economic assessment in the context of evaluating projects for the recovery of critical raw materials?',
'(39)\n\n‘preliminary economic assessment’ means an early-stage, conceptual assessment of the potential economic viability of a project for the recovery of critical raw materials from extractive waste;\n\n(40)\n\n‘magnetic resonance imaging device’ means a non-invasive medical device that uses magnetic fields to make anatomical images or any other device that uses magnetic fields to make images of the inside of object;\n\n(41)\n\n‘wind energy generator’ means the part of an onshore or offshore wind turbine that converts the mechanical energy of the rotor into electrical energy;\n\n(42)',
'For the purposes of the first subparagraph of this paragraph, insurance undertakings referred to in point (a) of the first subparagraph of Article 1(3) of this Directive that are part of a group, on the basis of financial relationships referred to in point (c)(ii) of Article 212(1) of Directive 2009/138/EC, and which are subject to group supervision in accordance with points (a) to (c) of Article 213(2) of that Directive shall be treated as subsidiary undertakings of the parent undertaking of that group.\n\n9.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# 獲取嵌入向量的相似度得分
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
📚 詳細文檔
模型詳情
模型描述
屬性 | 詳情 |
---|---|
模型類型 | 句子轉換器 |
基礎模型 | Snowflake/snowflake-arctic-embed-m-v1.5 |
最大序列長度 | 512個標記 |
輸出維度 | 768維 |
相似度函數 | 餘弦相似度 |
模型來源
- 文檔:Sentence Transformers Documentation
- 倉庫:Sentence Transformers on GitHub
- Hugging Face:Sentence Transformers on Hugging Face
完整模型架構
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
評估
指標
信息檢索
使用 InformationRetrievalEvaluator
進行評估。
指標 | 值 |
---|---|
cosine_accuracy@1 | 0.8225 |
cosine_accuracy@3 | 0.9526 |
cosine_accuracy@5 | 0.9725 |
cosine_accuracy@10 | 0.9873 |
cosine_precision@1 | 0.8225 |
cosine_precision@3 | 0.3175 |
cosine_precision@5 | 0.1945 |
cosine_precision@10 | 0.0987 |
cosine_recall@1 | 0.8225 |
cosine_recall@3 | 0.9526 |
cosine_recall@5 | 0.9725 |
cosine_recall@10 | 0.9873 |
cosine_ndcg@10 | 0.9141 |
cosine_mrr@10 | 0.8896 |
cosine_map@100 | 0.8903 |
訓練詳情
訓練數據集
未命名數據集
- 大小:29,911個訓練樣本
- 列:
sentence_0
和sentence_1
- 近似統計信息(基於前1000個樣本):
sentence_0 sentence_1 類型 字符串 字符串 詳情 - 最小值:13個標記
- 平均值:41.63個標記
- 最大值:252個標記
- 最小值:4個標記
- 平均值:233.72個標記
- 最大值:512個標記
- 樣本:
sentence_0 sentence_1 What measures must Member States take to ensure that workers who believe they have been discriminated against in terms of equal pay can establish their case before a competent authority or national court?
Article 18
Shift of burden of proof
1. Member States shall take the appropriate measures, in accordance with their national judicial systems, to ensure that, when workers who consider themselves wronged because the principle of equal pay has not been applied to them establish before a competent authority or national court facts from which it may be presumed that there has been direct or indirect discrimination, it shall be for the respondent to prove that there has been no direct or indirect discrimination in relation to pay.
2. Member States shall ensure that, in administrative procedures or court proceedings regarding alleged direct or indirect discrimination in relation to pay, where an employer has not implemented the pay transparency obligations set out in Articles 5, 6, 7, 9 and 10, it is for the employer to prove that there has been no such discrimination.
The first subparagraph of this paragraph shall not apply where the employer proves that the infringement of the obligati...What are the key considerations for recognizing and addressing discrimination in the context of compensation and penalties, particularly in relation to the gender pay gap?
discrimination, in particular for substantive and procedural purposes, including to recognise the existence of discrimination, to decide on the appropriate comparator, to assess the proportionality, and to determine, where relevant, the level of compensation awarded or penalties imposed. An intersectional approach is important for understanding and addressing the gender pay gap. This clarification should not change the scope of employers’ obligations in regard to the pay transparency measures under this Directive. In particular, employers should not be required to gather data related to protected grounds other than sex.
What is the process for aircraft operators and shipping companies regarding the surrendering of allowances in relation to their total emissions from the previous calendar year?
(b)
each aircraft operator surrenders a number of allowances that is equal to its total emissions during the preceding calendar year, as verified in accordance with Article 15;
(c)
each shipping company surrenders a number of allowances that is equal to its total emissions during the preceding calendar year, as verified in accordance with Article 3ge.
Member States, administering Member States and administering authorities in respect of a shipping company shall ensure that allowances surrendered in accordance with the first subparagraph are subsequently cancelled.
▼M15
3-e.
訓練超參數
非默認超參數
eval_strategy
: stepsper_device_train_batch_size
: 6per_device_eval_batch_size
: 6num_train_epochs
: 4multi_dataset_batch_sampler
: round_robin
框架版本
- Python:3.10.11
- Sentence Transformers:3.4.1
- Transformers:4.48.1
- PyTorch:2.4.0+cu121
- Accelerate:1.4.0
- Datasets:3.3.2
- Tokenizers:0.21.0
🔧 技術細節
損失函數
使用 MatryoshkaLoss
損失函數,參數如下:
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
訓練日誌
點擊展開
輪次 | 步數 | 訓練損失 | cosine_ndcg@10 |
---|---|---|---|
0.0201 | 100 | - | 0.6629 |
0.0401 | 200 | - | 0.7746 |
0.0602 | 300 | - | 0.8233 |
0.0802 | 400 | - | 0.8515 |
0.1003 | 500 | 0.4694 | 0.8621 |
0.1203 | 600 | - | 0.8680 |
0.1404 | 700 | - | 0.8733 |
0.1604 | 800 | - | 0.8774 |
0.1805 | 900 | - | 0.8757 |
0.2006 | 1000 | 0.1568 | 0.8795 |
0.2206 | 1100 | - | 0.8808 |
0.2407 | 1200 | - | 0.8789 |
0.2607 | 1300 | - | 0.8796 |
0.2808 | 1400 | - | 0.8822 |
0.3008 | 1500 | 0.1015 | 0.8821 |
0.3209 | 1600 | - | 0.8814 |
0.3410 | 1700 | - | 0.8756 |
0.3610 | 1800 | - | 0.8822 |
0.3811 | 1900 | - | 0.8848 |
0.4011 | 2000 | 0.0836 | 0.8843 |
0.4212 | 2100 | - | 0.8841 |
0.4412 | 2200 | - | 0.8803 |
0.4613 | 2300 | - | 0.8851 |
0.4813 | 2400 | - | 0.8818 |
0.5014 | 2500 | 0.0865 | 0.8849 |
0.5215 | 2600 | - | 0.8877 |
0.5415 | 2700 | - | 0.8806 |
0.5616 | 2800 | - | 0.8832 |
0.5816 | 2900 | - | 0.8930 |
0.6017 | 3000 | 0.0842 | 0.8928 |
0.6217 | 3100 | - | 0.8882 |
0.6418 | 3200 | - | 0.8858 |
0.6619 | 3300 | - | 0.8863 |
0.6819 | 3400 | - | 0.8828 |
0.7020 | 3500 | 0.0669 | 0.8839 |
0.7220 | 3600 | - | 0.8835 |
0.7421 | 3700 | - | 0.8854 |
0.7621 | 3800 | - | 0.8839 |
0.7822 | 3900 | - | 0.8882 |
0.8022 | 4000 | 0.0695 | 0.8871 |
0.8223 | 4100 | - | 0.8854 |
0.8424 | 4200 | - | 0.8822 |
0.8624 | 4300 | - | 0.8847 |
0.8825 | 4400 | - | 0.8863 |
0.9025 | 4500 | 0.0575 | 0.8819 |
0.9226 | 4600 | - | 0.8815 |
0.9426 | 4700 | - | 0.8836 |
0.9627 | 4800 | - | 0.8862 |
0.9828 | 4900 | - | 0.8889 |
1.0 | 4986 | - | 0.8927 |
1.0028 | 5000 | 0.0712 | 0.8935 |
1.0229 | 5100 | - | 0.8890 |
1.0429 | 5200 | - | 0.8919 |
1.0630 | 5300 | - | 0.8949 |
1.0830 | 5400 | - | 0.8950 |
1.1031 | 5500 | 0.0485 | 0.8934 |
1.1231 | 5600 | - | 0.8964 |
1.1432 | 5700 | - | 0.8953 |
1.1633 | 5800 | - | 0.8942 |
1.1833 | 5900 | - | 0.8929 |
1.2034 | 6000 | 0.0465 | 0.8912 |
1.2234 | 6100 | - | 0.8890 |
1.2435 | 6200 | - | 0.8914 |
1.2635 | 6300 | - | 0.8847 |
1.2836 | 6400 | - | 0.8873 |
1.3037 | 6500 | 0.0324 | 0.8912 |
1.3237 | 6600 | - | 0.8956 |
1.3438 | 6700 | - | 0.8954 |
1.3638 | 6800 | - | 0.8946 |
1.3839 | 6900 | - | 0.8931 |
1.4039 | 7000 | 0.0205 | 0.8951 |
1.4240 | 7100 | - | 0.8967 |
1.4440 | 7200 | - | 0.8960 |
1.4641 | 7300 | - | 0.8943 |
1.4842 | 7400 | - | 0.9003 |
1.5042 | 7500 | 0.0489 | 0.8946 |
1.5243 | 7600 | - | 0.8986 |
1.5443 | 7700 | - | 0.8945 |
1.5644 | 7800 | - | 0.8960 |
1.5844 | 7900 | - | 0.8987 |
1.6045 | 8000 | 0.039 | 0.8991 |
1.6245 | 8100 | - | 0.8959 |
1.6446 | 8200 | - | 0.8948 |
1.6647 | 8300 | - | 0.8933 |
1.6847 | 8400 | - | 0.8926 |
1.7048 | 8500 | 0.0297 | 0.8937 |
1.7248 | 8600 | - | 0.8974 |
1.7449 | 8700 | - | 0.8977 |
1.7649 | 8800 | - | 0.8973 |
1.7850 | 8900 | - | 0.8989 |
1.8051 | 9000 | 0.0248 | 0.8974 |
1.8251 | 9100 | - | 0.8980 |
1.8452 | 9200 | - | 0.8970 |
1.8652 | 9300 | - | 0.8997 |
1.8853 | 9400 | - | 0.9007 |
1.9053 | 9500 | 0.0534 | 0.9009 |
1.9254 | 9600 | - | 0.9015 |
1.9454 | 9700 | - | 0.9014 |
1.9655 | 9800 | - | 0.9008 |
1.9856 | 9900 | - | 0.9024 |
2.0 | 9972 | - | 0.9052 |
2.0056 | 10000 | 0.0295 | 0.9041 |
2.0257 | 10100 | - | 0.9009 |
2.0457 | 10200 | - | 0.9030 |
2.0658 | 10300 | - | 0.9028 |
2.0858 | 10400 | - | 0.9051 |
2.1059 | 10500 | 0.027 | 0.9063 |
2.1260 | 10600 | - | 0.9059 |
2.1460 | 10700 | - | 0.9044 |
2.1661 | 10800 | - | 0.9024 |
2.1861 | 10900 | - | 0.9005 |
2.2062 | 11000 | 0.0201 | 0.8996 |
2.2262 | 11100 | - | 0.9037 |
2.2463 | 11200 | - | 0.9029 |
2.2663 | 11300 | - | 0.9047 |
2.2864 | 11400 | - | 0.9030 |
2.3065 | 11500 | 0.0097 | 0.9041 |
2.3265 | 11600 | - | 0.9011 |
2.3466 | 11700 | - | 0.9000 |
2.3666 | 11800 | - | 0.8972 |
2.3867 | 11900 | - | 0.8985 |
2.4067 | 12000 | 0.0165 | 0.8979 |
2.4268 | 12100 | - | 0.8996 |
2.4469 | 12200 | - | 0.9026 |
2.4669 | 12300 | - | 0.9034 |
2.4870 | 12400 | - | 0.9054 |
2.5070 | 12500 | 0.0165 | 0.9029 |
2.5271 | 12600 | - | 0.9052 |
2.5471 | 12700 | - | 0.9057 |
2.5672 | 12800 | - | 0.9059 |
2.5872 | 12900 | - | 0.9092 |
2.6073 | 13000 | 0.0144 | 0.9081 |
2.6274 | 13100 | - | 0.9095 |
2.6474 | 13200 | - | 0.9102 |
2.6675 | 13300 | - | 0.9113 |
2.6875 | 13400 | - | 0.9103 |
2.7076 | 13500 | 0.0159 | 0.9105 |
2.7276 | 13600 | - | 0.9073 |
2.7477 | 13700 | - | 0.9084 |
2.7677 | 13800 | - | 0.9080 |
2.7878 | 13900 | - | 0.9083 |
2.8079 | 14000 | 0.0183 | 0.9083 |
2.8279 | 14100 | - | 0.9070 |
2.8480 | 14200 | - | 0.9085 |
2.8680 | 14300 | - | 0.9078 |
2.8881 | 14400 | - | 0.9075 |
2.9081 | 14500 | 0.0257 | 0.9073 |
2.9282 | 14600 | - | 0.9098 |
2.9483 | 14700 | - | 0.9089 |
2.9683 | 14800 | - | 0.9097 |
2.9884 | 14900 | - | 0.9079 |
3.0 | 14958 | - | 0.9081 |
3.0084 | 15000 | 0.0144 | 0.9084 |
3.0285 | 15100 | - | 0.9083 |
3.0485 | 15200 | - | 0.9078 |
3.0686 | 15300 | - | 0.9079 |
3.0886 | 15400 | - | 0.9089 |
3.1087 | 15500 | 0.0082 | 0.9093 |
3.1288 | 15600 | - | 0.9098 |
3.1488 | 15700 | - | 0.9106 |
3.1689 | 15800 | - | 0.9103 |
3.1889 | 15900 | - | 0.9110 |
3.2090 | 16000 | 0.0185 | 0.9117 |
3.2290 | 16100 | - | 0.9116 |
3.2491 | 16200 | - | 0.9125 |
3.2692 | 16300 | - | 0.9111 |
3.2892 | 16400 | - | 0.9109 |
3.3093 | 16500 | 0.0105 | 0.9125 |
3.3293 | 16600 | - | 0.9117 |
3.3494 | 16700 | - | 0.9118 |
3.3694 | 16800 | - | 0.9117 |
3.3895 | 16900 | - | 0.9137 |
3.4095 | 17000 | 0.019 | 0.9134 |
3.4296 | 17100 | - | 0.9129 |
3.4497 | 17200 | - | 0.9126 |
3.4697 | 17300 | - | 0.9133 |
3.4898 | 17400 | - | 0.9136 |
3.5098 | 17500 | 0.0109 | 0.9120 |
3.5299 | 17600 | - | 0.9124 |
3.5499 | 17700 | - | 0.9122 |
3.5700 | 17800 | - | 0.9129 |
3.5901 | 17900 | - | 0.9132 |
3.6101 | 18000 | 0.0207 | 0.9139 |
3.6302 | 18100 | - | 0.9134 |
3.6502 | 18200 | - | 0.9135 |
3.6703 | 18300 | - | 0.9139 |
3.6903 | 18400 | - | 0.9141 |
3.7104 | 18500 | 0.0105 | 0.9139 |
3.7304 | 18600 | - | 0.9138 |
3.7505 | 18700 | - | 0.9136 |
3.7706 | 18800 | - | 0.9141 |
📄 許可證
文檔中未提及相關許可證信息。
📖 引用
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Jina Embeddings V3
Jina Embeddings V3 是一個多語言句子嵌入模型,支持超過100種語言,專注於句子相似度和特徵提取任務。
文本嵌入
Transformers 支持多種語言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基於MS Marco段落排序任務訓練的交叉編碼器模型,用於信息檢索中的查詢-段落相關性評分
文本嵌入 英語
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基於蒸餾技術的稀疏檢索模型,專為OpenSearch優化,支持免推理文檔編碼,在搜索相關性和效率上優於V1版本
文本嵌入
Transformers 英語

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基於PubMedBERT的生物醫學實體表徵模型,通過自對齊預訓練優化語義關係捕捉
文本嵌入 英語
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一個強大的句子轉換器模型,專注於句子相似度和文本嵌入任務,在多個基準測試中表現出色。
文本嵌入 英語
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一個英文句子轉換器模型,專注於句子相似度任務,在多個文本嵌入基準測試中表現優異。
文本嵌入
Transformers 支持多種語言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一個多語言的句子嵌入模型,支持超過50種語言,適用於句子相似度計算等任務。
文本嵌入
Transformers 支持多種語言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一個化學語言模型,旨在實現完全由機器驅動的超快聚合物信息學。它將PSMILES字符串映射為600維密集指紋,以數值形式表示聚合物化學結構。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基於土耳其語BERT的句子嵌入模型,專為語義相似度任務優化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基於BAAI/bge-small-en-v1.5模型微調的文本嵌入模型,通過MEDI數據集與MTEB分類任務數據集訓練,優化了檢索任務的查詢編碼能力。
文本嵌入
Safetensors 英語
G
avsolatorio
945.68k
29
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98