🚀 DataikuNLP/paraphrase - MiniLM - L6 - v2
該模型是 此模型倉庫 在特定提交版本 c4dfcde8a3e3e17e85cd4f0ec1925a266187f48e
下的副本,來自 sentence - transformers。它是一個 sentence - transformers 模型,可將句子和段落映射到 384 維的密集向量空間,適用於聚類或語義搜索等任務。
🚀 快速開始
本模型可通過不同方式使用,下面將分別介紹使用 sentence-transformers
庫和 HuggingFace Transformers
庫的使用方法。
✨ 主要特性
- 基於
sentence-transformers
框架,能夠將句子和段落高效映射到 384 維的密集向量空間。
- 適用於多種自然語言處理任務,如聚類和語義搜索。
📦 安裝指南
若要使用 sentence-transformers
庫來調用此模型,需先安裝該庫:
pip install -U sentence-transformers
💻 使用示例
基礎用法
使用 sentence-transformers
庫
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('sentence-transformers/paraphrase-MiniLM-L6-v2')
embeddings = model.encode(sentences)
print(embeddings)
使用 HuggingFace Transformers
庫
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-MiniLM-L6-v2')
model = AutoModel.from_pretrained('sentence-transformers/paraphrase-MiniLM-L6-v2')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 詳細文檔
評估結果
要對該模型進行自動化評估,可參考 Sentence Embeddings Benchmark:https://seb.sbert.net
完整模型架構
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
引用與作者
此模型由 sentence - transformers 團隊訓練。
若你覺得該模型有幫助,可引用我們的論文 Sentence - BERT: Sentence Embeddings using Siamese BERT - Networks:
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "http://arxiv.org/abs/1908.10084",
}
📄 許可證
本模型採用 Apache - 2.0 許可證。
屬性 |
詳情 |
模型類型 |
sentence - transformers |
許可證 |
Apache - 2.0 |
標籤 |
sentence - transformers、feature - extraction、sentence - similarity、transformers |